CSE 431/531: Algorithm Analysis and Design (Spring 2021) NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

NP-Completeness Theory

- The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.
- Q: Why do we study negative results?
 - A given problem X cannot be solved in polynomial time.
 - Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient = Polynomial Time

- $\bullet\,$ Polynomial time: $O(n^k)$ for any constant k>0
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- $\bullet\,$ For natural problems, if there is an $O(n^k)\mbox{-time}$ algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

• The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

• Maximum Independent Set is NP-hard

Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators. **Output:** whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula
- Formula Satisfiablity is NP-hard

Outline

Some Hard Problems

P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

Encoding

The input of an problem will be encoded as a binary string.

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if $s \in X$.

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most p(|s|) steps.

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size \boldsymbol{k}
- Certifier: check if the given set is really an independent set

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_1 and G_2 ,

Output: whether two graphs are isomorphic to each other

- What is the certificate?
- What is the certifier?

The Complexity Class NP

- **Def.** B is an efficient certifier for a problem X if
 - B is a polynomial-time algorithm that takes two input strings \boldsymbol{s} and \boldsymbol{t}
 - there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

$\mathsf{Hamiltonian}\ \mathsf{Cycle}\in\mathsf{NP}$

- $\bullet~{\sf Input:}~{\sf Graph}~G$
- $\bullet\,$ Certificate: a sequence S of edges in G
- $|\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G,S) = 1 if and only if S is an HC in G
- Clearly, B runs in polynomial time
- $G \in \mathsf{HC}$ \iff $\exists S, B(G, S) = 1$

Graph Isomorphism $\in \mathsf{NP}$

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f: V \to V$
- $|\operatorname{encoding}(f)| \leq p(|\operatorname{encoding}(G_1,G_2)|)$ for some polynomial function p
- Certifier $B: B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \Leftrightarrow (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time
- $(G_1, G_2) \in \mathsf{GI} \quad \iff \quad \exists f, B((G_1, G_2), f) = 1$

$\mathsf{Maximum\ Independent\ Set} \in \mathsf{NP}$

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B {:}~ B((G,k),S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $(G,k) \in MIS \quad \iff \quad \exists S, \ B((G,k),S) = 1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

• Is Circuit-Sat \in NP?

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance • $\overline{\mathrm{HC}} \in \mathrm{Co-NP}$

The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $s \in \overline{X}$ if and only if $s \notin X$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP
- Indeed, Tautology = $\overline{Formula-Unsat}$

Prime

Prime

Input: an integer $q \ge 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- $\mathsf{Prime} \in \mathsf{Co-NP}$
- [Pratt 1970] Prime \in NP
- $P \subseteq NP \cap Co-NP$ (see soon)
- $\bullet~$ If a natural problem X is in NP \cap Co-NP, then it is likely that $X \in P$
- [AKS 2002] Prime \in P

$\mathsf{P}\subseteq\mathsf{NP}$

• Let $X \in \mathsf{P}$ and $s \in X$

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq$ Co-NP, thus $P \subseteq$ NP \cap Co-NP

Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $P \neq NP$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $\mathsf{P} \neq \mathsf{NP}$, then $\mathsf{HC} \notin \mathsf{P}$
 - HC \notin P, unless P = NP

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathsf{NP} \iff \overline{X} \in \mathsf{Co-NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co-NP}$

• General belief: we are in the 4th scenario

Outline

Some Hard Problems

2 P, NP and Co-NP

Olynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.
NP-Completeness

Def. A problem X is called NP-complete if
I X ∈ NP, and
Y ≤_P X for every Y ∈ NP.

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove P = NP (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
- If you believe P ≠ NP, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

Def. A problem X is called NP-complete if **3** $X \in NP$, and **3** $Y \leq_P X$ for every $Y \in NP$.

- How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

- Then, we can show that any problem Y ∈ NP can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit-Sat$ as an example.

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- $\bullet~G$ is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- $\bullet\,$ hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

- We consider decision problems
- Inputs are encoded as $\{0,1\}$ -strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

- **Def.** B is an efficient certifier for a problem X if
 - $\bullet \ B$ is a polynomial-time algorithm that takes two input strings s and t
 - there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- **Def.** A problem X is called NP-complete if **3** $X \in NP$, and **3** $Y \leq_P X$ for every $Y \in NP$.
 - If any NP-complete problem can be solved in polynomial time, then ${\cal P}={\cal N}{\cal P}$
 - Unless P = NP, a NP-complete problem can not be solved in polynomial time

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in NP$, let B(s,t) be the certifier
- Convert B(s,t) to a circuit and hard-wire s to the input gates
- $\bullet \ s$ is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions