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NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

@ A given problem X cannot be solved in polynomial time.

@ Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!
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Efficient = Polynomial Time

e Polynomial time: O(n*) for any constant k > 0

e Example: O(n),0(n?),0(n*3logn), O(n')

@ Not polynomial time: O(2"), O(n'°™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
@ For natural problems, if there is an O(n")-time algorithm, then k
is small, say 4

@ A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Q(2"°) for some ¢

@ Do not need to worry about the computational model




Outline

@ Some Hard Problems



Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether G contains a Hamiltonian cycle
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@ The graph is called the Petersen Graph. It has no HC.
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(len)
Better algorithm: 20(?)
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.
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Maximum Independent Set Problem

Def. An independent set of G = (V, F) is a subset I C V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)

Output: the size of the maximum independent set of G

@ Maximum Independent Set is NP-hard



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \VV, A, — operators.

Output: whether the boolean formula is satisfiable

e Example: —((—z1 A z2) V (—1 A =) V xp V (mxe A x3)) is not
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if each assignment satisfies the formula



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \VV, A, — operators.

Output: whether the boolean formula is satisfiable

e Example: —((—z1 A z2) V (—1 A =) V xp V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check
if each assignment satisfies the formula

@ Formula Satisfiablity is NP-hard



Outline

e P, NP and Co-NP
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision version
X' of the problem. If we have a polynomial time algorithm for the
decision version X', we can solve the original problem X in
polynomial time.
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Optimization to Decision

Shortest Path
Input: graph G = (V. E), weight w, s,t and a bound L
Output: whether there is a path from s to ¢ of length at most L

v

Maximum Independent Set
Input: a graph GG and a bound k&

Output: whether there is an independent set of size at least £
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Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
e Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
1100001101




Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
e Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
110000110111111111000001
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Example: Interval Scheduling Problem
01 2 84567809
S s S
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| e e
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Encoding

The input of an problem will be encoded as a binary string. )

Example: Interval Scheduling Problem
01 2 84567809

=
o
=
= |
® (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)
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Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8

T X

N=}

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)
@ Encode the sequence into a binary string as before
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Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|. J

Q: Does it matter how we encode the input instances? )

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not
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Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s € X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if
se X.

v

Def. A has a polynomial running time if there is a polynomial
function p(-) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.
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Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time. J

@ The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.
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Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of GG

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.
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Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 29" time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

@ Certificate: a set of size k

o Certifier: check if the given set is really an independent set
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Graph Isomorphism

Graph Isomorphism
Input: two graphs G and Go,

Output: whether two graphs are isomorphic to each other

O—0Q oo
—3 ,'. .
@\e e’ {

@ What is the certificate?
@ What is the certifier?




The Complexity Class NP

Def. B is an efficient certifier for a problem X if
@ B is a polynomial-time algorithm that takes two input strings s
and t
@ there is a polynomial function p such that, s € X if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.
The string ¢ such that B(s,t) = 1 is called a certificate.




The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t
@ there is a polynomial function p such that, s € X if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.
The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.
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Hamiltonian Cycle € NP

Input: Graph G
Certificate: a sequence S of edges in G

lencoding(.5)| < p(|encoding(G)|) for some polynomial function
p
Certifier B: B(G,S) =1 if and only if S is an HC in G

Clearly, B runs in polynomial time

(4]

e G e HC — 35, B(G,S) =1
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@ Input: two graphs G; = (V, E4) and Gy = (V, Ey) on V
o Certificate: a 1-1 function f:V — V

@ |encoding(f)| < p(|encoding(G1, G2)|) for some polynomial
function p
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Graph Isomorphism € NP

Input: two graphs G; = (V, Ey) and Gy = (V, E3) on V
Certificate: a 1-1 function f: V —V

lencoding(f)| < p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1,G3), f) = 1 if and only if for every u,v € V,
we have (u,v) € Ey & (f(u), f(v)) € Es.

Clearly, B runs in polynomial time

o (G1,Gy) € Gl — 3f, B((G1,G), f) =1



Maximum Independent Set € NP

@ Input: graph G = (V, E) and integer k



Maximum Independent Set € NP

@ Input: graph G = (V, E) and integer k
@ Certificate: aset S C V of size k



Maximum Independent Set € NP

@ Input: graph G = (V, E) and integer k
@ Certificate: aset S C V of size k

@ |encoding(S)| < p(|encoding(G, k)|) for some polynomial
function p



Maximum Independent Set € NP

@ Input: graph G = (V, E) and integer k

@ Certificate: aset S C V of size k

@ |encoding(S)| < p(|encoding(G, k)|) for some polynomial
function p

o Certifier B: B((G,k),S) =1 if and only if S is an independent
set in G



Maximum Independent Set € NP

Input: graph G = (V, E) and integer k
Certificate: a set S C V of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time



Maximum Independent Set € NP

Input: graph G = (V, E) and integer k
Certificate: a set S C V of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

e (G, k) e MIS = 35, B((G,k),S) =1
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Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 17

@ Is Circuit-Sat € NP?
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HC
Input: graph G = (V, E)
Output: whether G does not contain a Hamiltonian cycle

e Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

o Unlikely

@ Alice can only convince Bob that GG is a no-instance
e HC € Co-NP



The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
s € X if and only if s ¢ X.

Def. Co-NP is the set of decision problems X such that X € NP. J
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Def. A tautology is a boolean formula that always evaluates to 1. ]

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (M1 Axg)V (—xy A —xg) Vg V (—xg Axs) is a tautology
@ Bob can certify that a formula is not a tautology

@ Thus Tautology € Co-NP

o Indeed, Tautology = Formula-Unsat
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Output: whether ¢ is a prime
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Prime

Prime
Input: an integer ¢ > 2
Output: whether ¢ is a prime

@ It is easy to certify that ¢ is not a prime
@ Prime € Co-NP

o [Pratt 1970] Prime € NP

@ P C NP N Co-NP (see soon)

°

If a natural problem X is in NP N Co-NP, then it is likely that
XeP

o [AKS 2002] Prime € P
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o let XePandse X

Q: How can Alice convince Bob that s is a yes instance? J

A: Since X € P, Bob can check whether s € X by himself, without
Alice's help. J

@ The certificate is an empty string
@ Thus, X € NP and P C NP

e Similarly, P C Co-NP, thus P € NP N Co-NP
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ls P = NP?

e A famous, big, and fundamental open problem in computer
science

o Little progress has been made
@ Most researchers believe P # NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

@ Complexity assumption: P # NP

@ We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:
e if P # NP, then HC ¢ P
e HC ¢ P, unless P = NP
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Is NP = Co-NP?

@ Again, a big open problem
@ Most researchers believe NP # Co-NP.



4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P € NP N Co-NP

NP = Co-NP

P = NP = Co-NP

@ General belief: we are in the 4th scenario
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Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time. l

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time. ’
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G=(V,F)and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

Obs. G has a HP from s to t if and only if graph on right side has J
a HC.
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NP-Completeness

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X for every Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-complete problems are the hardest problems in NP

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

@ To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

o If you believe P # NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X
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Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X forevery Y € NP.

@ How can we find a problem X & NP such that every problem
Y € NP is polynomial time reducible to X? Are we asking for
too much?

@ No! There is indeed a large family of natural NP-complete
problems



The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

Tqe
Toe
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Circuit-Sat is NP-Complete

o key fact: algorithms can be
converted to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T'(n) can be converted into a circuit of
size p(T'(n)) for some polynomial
function p(-).

program data

Time 1 ‘

Time 2
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program data

o key fact: algorithms can be
converted to circuits

Time 1 ‘
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Fact Any algorithm that takes n bits as | 7>
input and outputs 0/1 with running time S et %
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T'(n) can be converted into a circuit of _—
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function p(-).
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@ Then, we can show that any problem Y € NP can be reduced to
Circuit-Sat.



Circuit-Sat is NP-Complete

program data

o key fact: algorithms can be
converted to circuits

Time 1 ‘ ‘ ‘

. . A R RRRNNN
Fact Any algorithm that takes n bits as | 7>
input and outputs 0/1 with running time S et %
A R RN

T'(n) can be converted into a circuit of _—
size p(T'(n)) for some polynomial
function p(-).

Time T ‘

@ Then, we can show that any problem Y € NP can be reduced to
Circuit-Sat.
@ We prove HC <p Circuit-Sat as an example.
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o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
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HC <p Circuit-Sat

check-HC(G, S) —* e C

[TTTTTTT TTTTTTITT T TTTTTTTTT
G S 01001100 S

Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C” to obtain the circuit C'
G is a yes-instance if and only if C' is satisfiable [d
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@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t)
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Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

e Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable ]

Theorem Circuit-Sat is NP-complete.




Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack
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Summary

@ We consider decision problems
@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance




Summary

Def. B is an efficient certifier for a problem X if
@ B is a polynomial-time algorithm that takes two input strings s
and t
@ there is a polynomial function p such that, s € X if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.
The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.




Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X for every Y € NP.

o If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time
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Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover
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Summary

Proof of NP-Completeness for Circuit-Sat
@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier
Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions



	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Summary

