
CSE 431/531: Algorithm Analysis and Design (Spring 2021)

NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/50

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!

2/50

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!

2/50

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

3/50

Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k
is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model

4/50

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

5/50

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

5/50

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

6/50

Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

7/50

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

8/50

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/50

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/50

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

8/50

Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

9/50

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with ∨,∧,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check
if each assignment satisfies the formula

Formula Satisfiablity is NP-hard

9/50

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with ∨,∧,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check
if each assignment satisfies the formula

Formula Satisfiablity is NP-hard

10/50

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

11/50

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

11/50

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

11/50

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision version
X ′ of the problem. If we have a polynomial time algorithm for the
decision version X ′, we can solve the original problem X in
polynomial time.

12/50

Optimization to Decision

Shortest Path
Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

12/50

Optimization to Decision

Shortest Path
Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

111101111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101

111100011111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 11110111110001

1111000011000001
110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001

110000110111111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001
1100001101

11111111000001

13/50

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001
110000110111111111000001

14/50

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/50

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/50

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

14/50

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before

15/50

Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not

15/50

Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not

16/50

Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s ∈ X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if
s ∈ X.

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

16/50

Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s ∈ X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if
s ∈ X.

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

16/50

Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s ∈ X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if
s ∈ X.

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

17/50

Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.

17/50

Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.

18/50

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/50

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/50

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/50

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

18/50

Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

19/50

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/50

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/50

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/50

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

19/50

Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set

20/50

Graph Isomorphism

Graph Isomorphism
Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

What is the certificate?

What is the certifier?

20/50

Graph Isomorphism

Graph Isomorphism
Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

2 3

4

56

1

2 3

4

56

1

What is the certificate?

What is the certifier?

20/50

Graph Isomorphism

Graph Isomorphism
Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

2 3

4

56

1

2 6

4

35

1

What is the certificate?

What is the certifier?

20/50

Graph Isomorphism

Graph Isomorphism
Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

2 3

4

56

1

2 6

4

35

1

What is the certificate?

What is the certifier?

20/50

Graph Isomorphism

Graph Isomorphism
Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

2 3

4

56

1

2 6

4

35

1

What is the certificate?

What is the certifier?

21/50

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t

there is a polynomial function p such that, s ∈ X if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

21/50

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t

there is a polynomial function p such that, s ∈ X if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

22/50

Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial function
p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

23/50

Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every u, v ∈ V ,
we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

24/50

Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1

25/50

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

25/50

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

26/50

HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP

27/50

The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
s ∈ X if and only if s /∈ X.

Def. Co-NP is the set of decision problems X such that X ∈ NP.

28/50

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

Indeed, Tautology = Formula-Unsat

28/50

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

Indeed, Tautology = Formula-Unsat

28/50

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

Indeed, Tautology = Formula-Unsat

28/50

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

Indeed, Tautology = Formula-Unsat

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

29/50

Prime

Prime
Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely that
X ∈ P

[AKS 2002] Prime ∈ P

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

30/50

P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself, without
Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P

HC /∈ P, unless P = NP

31/50

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP

32/50

Is NP = Co-NP?

Again, a big open problem

Most researchers believe NP 6= Co-NP.

32/50

Is NP = Co-NP?

Again, a big open problem

Most researchers believe NP 6= Co-NP.

33/50

4 Possibilities of Relationships

Notice that X ∈ NP ⇐⇒ X ∈ Co-NP and P ⊆ NP ∩ Co-NP

P = NP = Co-NP
NP = Co-NP

P

NP Co-NPP = NP ∩ Co-NP
NP Co-NP

NP ∩ Co-NP

P

General belief: we are in the 4th scenario

34/50

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

35/50

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

35/50

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

35/50

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

36/50

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has
a HC.

36/50

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has
a HC.

36/50

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

G

Obs. G has a HP from s to t if and only if graph on right side has
a HC.

36/50

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side has
a HC.

36/50

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side has
a HC.

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-hard if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

37/50

NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

38/50

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

39/50

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem
Y ∈ NP is polynomial time reducible to X? Are we asking for
too much?

No! There is indeed a large family of natural NP-complete
problems

39/50

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem
Y ∈ NP is polynomial time reducible to X? Are we asking for
too much?

No! There is indeed a large family of natural NP-complete
problems

39/50

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem
Y ∈ NP is polynomial time reducible to X? Are we asking for
too much?

No! There is indeed a large family of natural NP-complete
problems

40/50

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

x1
x2

x3

41/50

Circuit-Sat is NP-Complete

key fact: algorithms can be
converted to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be reduced to
Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.

41/50

Circuit-Sat is NP-Complete

key fact: algorithms can be
converted to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be reduced to
Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.

41/50

Circuit-Sat is NP-Complete

key fact: algorithms can be
converted to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be reduced to
Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.

42/50

HC ≤P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC
hard-wire the instance G to the circuit C ′ to obtain the circuit C
G is a yes-instance if and only if C is satisfiable

42/50

HC ≤P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC
hard-wire the instance G to the circuit C ′ to obtain the circuit C
G is a yes-instance if and only if C is satisfiable

42/50

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC

hard-wire the instance G to the circuit C ′ to obtain the circuit C
G is a yes-instance if and only if C is satisfiable

42/50

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S S0

C

0 0 0 01 1 1

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC
hard-wire the instance G to the circuit C ′ to obtain the circuit C

G is a yes-instance if and only if C is satisfiable

42/50

HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S S0

C

0 0 0 01 1 1

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC
hard-wire the instance G to the circuit C ′ to obtain the circuit C
G is a yes-instance if and only if C is satisfiable

43/50

Y ≤P Circuit-Sat, For Every Y ∈NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C ′ for the algorithm check-Y

hard-wire the instance s to the circuit C ′ to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

43/50

Y ≤P Circuit-Sat, For Every Y ∈NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C ′ for the algorithm check-Y

hard-wire the instance s to the circuit C ′ to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

44/50

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

45/50

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Summary

46/50

Summary

We consider decision problems

Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential
time algorithm

Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance

47/50

Summary

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t

there is a polynomial function p such that, s ∈ X if and only if
there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

48/50

Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y ≤P X.

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

If any NP-complete problem can be solved in polynomial time,
then P = NP

Unless P = NP , a NP-complete problem can not be solved in
polynomial time

49/50

Summary

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

50/50

Summary

Proof of NP-Completeness for Circuit-Sat
Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X ∈ NP, let B(s, t) be the certifier

Convert B(s, t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions

	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Summary

