Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

@ Divide-and-Conquer
© Counting Inversions

9 Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

@ Other Classic Algorithms using Divide-and-Conquer
© Solving Recurrences

@ Computing n-th Fibonacci Number

2/73

Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Divide-and-Conquer

@ not necessarily for combinatorial optimization problems
@ trivial algorithm already runs in polynomial time

@ divide-and-conquer gives a more efficient algorithm

@ main focus of analysis: running time

Divide-and-Conquer

e Divide: Divide instance into many smaller instances

e Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

merge-sort(A, n)
1. if n =1 then

2: return A
3: else

4: B + merge-sort (A[l.[n/%], Ln/2j>
5: C + merge—sort(AHn/ZJ +1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

merge-sort(A, n)
1: if n =1 then

2: return A
3: else

4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>
5: C' < merge-sort (A[Ln/?] +1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

@ Divide: trivial
e Conquer: 4,5
@ Combine: 6

Running Time for Merge-Sort

| Ap.4]

@ Each level takes running time O(n)

@ There are O(lgn) levels
@ Running time = O(nlgn)
@ Better than insertion sort

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
A\ T(n/2)) + T([n/21) + O(n) ifn>2

7/73

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
T\ T2+ T(n/2) + O) i >2

@ With some tolerance of informality:

o) ifn=1
T(n) = {2T(n/2) +0(n) ifn>2

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
T\ T2+ T(n/2) + O) i >2

@ With some tolerance of informality:

o) ifn=1
T(n) = {2T(n/2) +0(n) ifn>2

@ Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
T\ T2+ T(n/2) + O) i >2

@ With some tolerance of informality:

o) ifn=1
T(n) = {2T(n/2) +0(n) ifn>2

@ Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlgn) (we shall show
how later)

Divide-and-Conquer
o q

© Counting Inversions

9 Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

@ Other Classic Algorithms using Divide-and-Conquer
© Solving Recurrences

@ Computing n-th Fibonacci Number

8/73

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

9/73

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
10 8 15 9 12

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
10 8 15 9 12

8 9 10 12 15

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9),(15,9), (15,12)

count-inversions(A, n)

e+ 0

2: for every i <~ 1ton —1 do

3 for every j <~ i+ 1 ton do

4: if Afi] > A[j] then c <+ c+1
5: return c

=

10/73

e p=|n/2],B=A[l.p],C = Ap+1.n]

° #invs(A) = #invs(B) + #invs()+m

= [{Gi.): Bl > Cljl}|
Q: How fast can we compute m, via trivial algorithm? J
A: O(n?))|

@ Can not improve the O(n?) time for counting inversions. 11/73

e p=|n/2],B=A[l.p],C = Ap+1.n]
° #invs(A) = #invs(B) + #invs()+m
= [{(@.9) : Bl > Cjl}]

Lemma If both B and C' are sorted, then we can compute m in
O(n) time!

12/73

Count pairs 4, j such that B[i] > Cj]:

B:13]812]/20/32]48 total= 0

13/73

Count pairs 4, j such that B[i] > Cj]:

B:13]812]/20/32]48 total= 0
5

13/73

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

12

20

32

48

!

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

12

20

32

48

~ [

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

12

20

32

48

~ [

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

+2

total= 2

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12120|32|48

5 9 (25|29
+0 +2

3 718

total= 2

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12120|32|48

5 9 (25|29
+0 +2

3 71819

total= 2

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12120|32|48

5 9 (25|29
+0 +2

3 71819

total= 2

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12120|32|48

5 9 (25|29
+0 +2 +3

3 718912

total= 5

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12120|32|48

5 9 (25|29
+0 +2 +3

3 718912

total= 5

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 121203248
5) 912529

+0 +2 4343
3 7T1819(12(20

total= 8

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 121203248
5) 912529

+0 +2 4343
3 7T1819(12(20

total= 8

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12(20|3248 total= 8
5 912529

+0 +2 +343
3 718]9|12]20]25

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12(20|3248 total= 8
5 912529

+0 +2 +343
3 718]9|12]20]25

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 12(20|3248 total= 8
5 912529

+0 +2 +343
3 78] 9|12|20(25|29

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

v

B:|3]|8[12]/20]32]48 total= 8

+0 +2 4343

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32]|48 total= 13

+0 +2 4343 +5

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32]|48 total= 13

v

+0 +2 4343 +5

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32]|48 total= 18

v

C:15|7]|9]2529

+0 +2 4343 4545
3|15 7]8]|9]12{20]|25[29|32|48

Counting Inversions between B and C'

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32]|48 total= 18

C:15|7]|9]2529

+0 +2 4343 4545
3|15 7]8]|9]12{20]|25[29|32|48

Count Inversions between B and ('

@ Procedure that merges B and C' and counts inversions between B
and C at the same time

merge-and-count(B, C, ny, ns)
count + 0;
A<« array of size ny +no; i <+ 1; j + 1
while : < n; or j <n, do
if j > ny or (i <ny and BJi] < C[j]) then
Ali+j—1]« Bfi|; i+ i+1
count <— count + (j — 1)
else
Ali+j -1« Cljl;j«j+1
return (A, count)

© O XN WD =

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) < sort-and-count (A[l..Ln/2H, Ln/2j>

5: (C,m2) < sort-and-count <A[Ln/2j +1.n], [n/ﬂ)
: (A, m3) < merge-and-count(B, C, |n/2], [n/2])

7: return (A, my + ma + ms3)

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n) o Divide: trivial
1: if n =1 then e Conquer: 4,5
2: return (4,0) e Combine: 6, 7
3: else

4: (B, my) « sort-and-count (A[l..Ln/2H, Ln/2j>

5: (C,m2) < sort-and-count (A[Ln/?j +1.n], [n/ﬂ)
: (A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, my + ma + ms3)

sort-and-count(A, n)
1: if n =1 then
2: return (A,0)
3: else
4: (B,my) <+ sort-and-count (A[l..[n/QH, Ln/QJ)

5: (C,my) < sort-and-count (A[[n/ZJ +1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, m; + mg + ms3)

@ Recurrence for the running time: T'(n) = 27'(n/2) + O(n)

sort-and-count(A, n)
1: if n =1 then
2: return (A,0)
3: else
4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>

5: (Cymg) sort—and—count(AHn /2] +1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, m; + mg + ms3)

@ Recurrence for the running time: T'(n) = 27'(n/2) + O(n)
@ Running time = O(nlgn)

© Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
© Solving Recurrences

@ Computing n-th Fibonacci Number

17/73

© Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

18/73

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine | Merge 2 sorted arrays Trivial

19/73

Assumption We can choose median of an array of size n in O(n) J
time.

2918275643845 194169 |25|76|15|92|37|17|85

20,73

Assumption We can choose median of an array of size n in O(n) J
time.

2918275643845 194169|25|76|15|92|37|17|85

20,73

Assumption We can choose median of an array of size n in O(n) J
time.

2918275643845 194169|25|76|15|92|37|17|85

29 |38 |45 |25 |15 |37 |17 |64 | 82| 75|94 |92 |69 |76 |85

20,73

Assumption We can choose median of an array of size n in O(n) J
time.

2918275643845 194169|25|76|15|92|37|17|85

29 |38 |45 |25 |15 |37 |17 |64 | 82| 75|94 |92 |69 |76 | 8

20,73

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

2982|7564 |38 |45194|69 |25 |76|15 92|37 |17 |85

29|38 |45 25|15 |37 17|64 827594 92]69]|76 |85

25|15 | 17129 | 38 |45 |37 |64 8275949269 |76 |85

Quicksort

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x < lower median of A

3: AL < array of elements in A that are less than z \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayr,length of Ar) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

Quicksort

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x < lower median of A

3: AL < array of elements in A that are less than z \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayr,length of Ar) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

@ Recurrence T'(n) < 2T (n/2) + O(n)

Quicksort

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x < lower median of A

3: AL < array of elements in A that are less than z \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayr,length of Ar) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

@ Recurrence T'(n) < 2T (n/2) + O(n)
@ Running time = O(nlgn)

Assumption We can choose median of an array of size n in O(n) J
time.

Q: How to remove this assumption? J

22/73

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

@ There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

@ There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

@ Choose a pivot randomly and pretend it is the median (it is
practical)

Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x « a random element of A (z is called a pivot)

3: Ap < array of elements in A that are less than z \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayg,length of Ar) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers? J

24/73

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers? J

A: No! The execution of a computer programs is deterministic! |

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers? J

A: No! The execution of a computer programs is deterministic! |

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers? J

A: No! The execution of a computer programs is deterministic! |

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

@ In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of z, and Bp

2: x « a random element of A (z is called a pivot)

3: Ap < array of elements in A that are less than z \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ayg,length of Ar) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

Lemma The expected running time of the algorithm is O(nlgn). J

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

26/73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

29

82

75

64

38

45

94

69

25

76

15

92

37

17

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

64

82

75

29

38

45

94

69

25

76

15

92

37

17

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

64

82

75

29

38

45

94

69

25

76

15

92

37

17

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

64

82

75

29

38

45

94

69

25

76

15

92

37

17

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

82

75

29

38

45

94

69

25

76

15

92

37

64

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

82

75

29

38

45

94

69

25

76

15

92

37

64

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

64

75

29

38

45

94

69

25

76

15

92

37

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

64

75

29

38

45

94

69

25

76

15

92

37

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

37

75

29

38

45

94

69

25

76

15

92

64

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

37

75

29

38

45

94

69

25

76

15

92

64

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

37

64

29

38

45

94

69

25

76

15

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

37

64

29

38

45

94

69

25

76

15

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-,

17

37

15

29

38

45

94

69

25

76

64

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-—.

17

37

15

29

38

45

94

69

25

76

64

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-—.

17

37

15

29

38

45

64

69

25

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-—.

17

37

15

29

38

45

64

69

25

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

-—.

17

37

15

29

38

45

25

69

64

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

17

37

15

29

38

45

25

69

64

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

17

37

15

29

38

45

25

64

69

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

iJ

17

37

15

29

38

45

25

64

69

76

94

92

75

82

85

26,73

@ In-Place Sorting Algorithm: an algorithm that only uses “small” J

extra space.

iJ

17137115129 | 38|45 |25 |64 |69 |76|94 92|75 82|85

@ To partition the array into two parts, we only need O(1) extra
space.

26,73

partition(A, ¢,)
1. p < random integer between ¢ and r, swap A[p| and A[/(]
20U,
3: while true do

4:
5:
6:
7
8

9:

while i < j and Afi] < A[j]do j <+ j—1
if - = j then break

swap Afi] and A[j]; i + i+ 1

while i < j and Afi] < A[j] do i< i+1
if ¢ = j then break

swap Afi] and A[j]; j«+j—1

10: return 2

In-Place Implementation of Quick-Sort

quicksort(A, ¢, r)

1: if ¢ > r then return
m < patition(A, ¢,)
quicksort(A, ¢, m — 1)
quicksort(A,m + 1,r)

2N

@ To sort an array A of size n, call quicksort(A,1,n).

Note: We pass the array A by reference, instead of by copying.]

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

29/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

ol —

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

ol —

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31812203248

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31812203248

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

121203248

¢
i

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

121203248

¢
i

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31812203248

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31812203248

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31812203248

20/73

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

20/73

@ To merge two arrays, we need a third array with size equaling the

total size of two arrays

20

32

48

25

29

12

20

25

29

32

48

20/73

© Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
© Solving Recurrences

@ Computing n-th Fibonacci Number

30/73

Q: Can we do better than O(nlogn) for sorting? J

31/73

Q: Can we do better than O(nlogn) for sorting? J

A: No, for comparison-based sorting algorithms. J

31/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
@ To sort, we are only allowed to compare two elements

@ We can not use “internal structures’ of the elements

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

|

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

J

@ Bob has one number z in his hand, = € {1,2,3,--- , N}.

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

J

@ Bob has one number z in his hand, = € {1,2,3,--- , N}.
@ You can ask Bob "yes/no" questions about z.

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

@ Bob has one number z in his hand, = € {1,2,3,--- , N}.
@ You can ask Bob "yes/no" questions about z.

Q: How many questions do you need to ask Bob in order to know x?J

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

@ Bob has one number z in his hand, = € {1,2,3,--- | N}.
@ You can ask Bob "yes/no" questions about z.

Q: How many questions do you need to ask Bob in order to know a:?J

A: [log, N].)

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

@ Bob has one number z in his hand, = € {1,2,3,--- , N}.
@ You can ask Bob "yes/no" questions about z.

Q: How many questions do you need to ask Bob in order to know a:?J

A: [log, N]. J

Q: Can we do better than O(nlogn) for sorting? J
A: No, for comparison-based sorting algorithms. J
@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

33/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 7?7

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 7?7

A: log,n! =0O(nlgn)

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
e

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
e

Q: How many questions do you need to ask in order to get the
permutation 77?7

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

@ Bob has a permutation 7w over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
e

Q: How many questions do you need to ask in order to get the
permutation 77?7

A: At least log,n! = ©(nlgn)

© Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

35/73

Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

36,73

Selection Problem
Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlgn).

Selection Problem
Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlgn).

@ Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A,n)
1. if n <1 then return A

t < number of times = appear A
return the array obtained by concatenating B, the array
containing t copies of x, and Bg

2: = < lower median of A

3: Ar < elements in A that are less than z > Divide
4: Ag < elements in A that are greater than z > Divide
5. By, < quicksort(Ay, Ay .size) > Conquer
6: Br < quicksort(Ag, Ag.size) > Conquer
7

8:

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return

[

© o RN

=
2

> Divide
> Divide

> Conquer

> Conquer

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return

[

© o RN

=
2

> Divide
> Divide

> Conquer

> Conquer

@ Recurrence for selection: T'(n) = T(n/2) + O(n)

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return

[

© o RN

=
2

> Divide
> Divide

> Conquer

> Conquer

@ Recurrence for selection: T'(n) = T(n/2) + O(n)
@ Solving recurrence: T'(n) = O(n)

Randomized Selection Algorithm

selection(A, n, 1)

[

=
2

© N RN

if n =1 thenreturn A
x < random element of A (called pivot)
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then
return selection(Ay, Ay .size, q)
else if i > n — Apg.size then
return selection(Ag, Ag.size,i — (n — Ag.size))
else
return x

> Divide
> Divide

> Conquer

> Conquer

Randomized Selection Algorithm

selection(A, n, 1)
if n =1 thenreturn A
x < random element of A (called pivot)
A < elements in A that are less than x
AR < elements in A that are greater than =
if i < A; .size then

return selection(Ay, Ay .size, q)
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size))
else

return x

[

© N RN

=
2

> Divide
> Divide

> Conquer

> Conquer

@ expected running time = O(n)

© Divide-and-Conquer
© Counting Inversions

Q Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

e Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

40/73

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 +22% — 5z +4) x (22° — 322 + 62 — 5)

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 +22% — 5z +4) x (22° — 322 + 62 — 5)
= 62°% — 92° 4 182* — 1523

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 25z

+ 823 — 1222 4 242 — 20
= 62°% — 525 + 22* + 2023 — 5222 + 492 — 20

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 +22% — 5z +4) x (22° — 322 + 62 — 5)
= 62°% — 92° 4 182* — 1523

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 25z

+ 823 — 1222 + 242 — 20
= 62°% — 525 + 22* + 2023 — 5222 + 492 — 20

o Input: (4,-5,2,3),(—5,6,—3,2)
o Output: (—20,49, —52,20,2, —5,6)

polynomial-multiplication(A, B, n)

1. let Clk] < 0 for every k =0,1,2,--- ,2n — 2
2: fori <~ 0Oton—1do

3: for j <~ 0ton—1do

4: Cli+ j] - C[i + j] + A[i] x Blj]

5: return C

42/73

polynomial-multiplication(A, B, n)

1. let Clk] < 0 for every k =0,1,2,--- ,2n — 2
2: fori <~ 0Oton—1do

3: for j <~ 0ton—1do

4: Cli+ j] - C[i + j] + A[i] x Blj]

5: return C

Running time: O(n?)

42/73

p(z) = 32° + 22 — 5o +4 = (3x + 2)2® + (—5z + 4)
g(z) = 22° — 32° + 62 — 5 = (22 — 3)a® + (61 — 5)

43/73

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 202 — 5r 4+ 4 = (32 + 2)2® + (=5z + 4)
q(z) = 22° — 32* + 62 — 5 = (22 — 3)z* + (62 — 5)

. degree of n — 1 (assume n is even)
= pu(x)z™? + pi(x),
m(x), pr(x): polynomials of degree n/2 — 1.

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 202 — 5r 4+ 4 = (32 + 2)2® + (=5z + 4)
q(z) = 22° — 32* + 62 — 5 = (22 — 3)z* + (62 — 5)

. degree of n — 1 (assume n is even)
= pu(x)z™? + pi(x),
m(x), pr(x): polynomials of degree n/2 — 1.

pg = (puz™? +pr) (quz""” + q1)

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 202 — 5r 4+ 4 = (32 + 2)2® + (=5z + 4)
q(z) = 22° — 32* + 62 — 5 = (22 — 3)z* + (62 — 5)

. degree of n — 1 (assume n is even)
= pu(x)z™? + pi(x),
m(x), pr(x): polynomials of degree n/2 — 1.

pg = (puz™? +pr) (quz""” + q1)
= puqur” + (pHQL + po]H)JUn/2 +PLqL

pq = (prz""? + pr) (quz™? + qr)
= pranz” + (prqr + pram) ™ + prar

4473

Divide-and-Conquer for Polynomial Multiplication

pq = (prz""? + pr) (quz™? + qr)
= puqur" + (pHC]L + quH)$n/2 + prLqL

multiply(p, ¢) = multiply(p#, gu) x ="
+ (multiply(pa, q.) + multiply(pr, gr)) x 2™
+ multiply(pr, qr.)

Divide-and-Conquer for Polynomial Multiplication

pq = (prz""? + pr) (quz™? + qr)
= puqur" + (pHC]L + quH)$n/2 + prLqL

multiply(p, ¢) = multiply(p#, gu) x ="
+ (multiply(pa, q.) + multiply(pr, gr)) x 2™
+ multiply(pr, qr.)

@ Recurrence: T'(n) = 4T(n/2) + O(n)

Divide-and-Conquer for Polynomial Multiplication

pq = (prz""? + pr) (quz™? + qr)
= puqur" + (pHC]L + quH)$n/2 + prLqL

multiply(p, ¢) = multiply(p#, gu) x ="
+ (multiply(pa, q.) + multiply(pr, gr)) x 2™
+ multiply(pr, qr.)

@ Recurrence: T'(n) = 4T(n/2) + O(n)
e T(n)=0(n?

45/73

pq = (puz™? + pr) (quz™” + q1)
= puqur" + (pHQL +pLQH)$n/2 +PLqL

45/73

pq = (puz™? + pr) (quz™” + q1)
= puqur" + (pHQL +pLQH)l’n/2 +PLqL

® puqr +prqun = (pa +p1)(qu +qL) — PrqE — PLIL

45/73

46,73

ru = multiply(pa, gu)
r, = multiply(pr, qr.)

46,73

ry = multiply(pm, qu)
r, = multiply(pr, q1.)
multiply(p, q) = 7 x 2"

+ (multiply(pyr + pr,qm + qr) — g —r) x 2"
+ 7L

/2

46,73

rg = multiply(py, qu)
r, = multiply(pr, qr.)
multiply(p, ¢) = ry x "

+ (multiply(pyr + pr,qm + qr) — g —r) x 2"
+ 7L

/2

@ Solving Recurrence: T'(n) = 37'(n/2) + O(n)

46,73

Divide-and-Conquer for Polynomial Multiplication

rg = multiply(py, qn)
r = multiply(pr, q1)
multiply(p, ¢) = rg x "

+ (multiply(pH +pr,qu +qr) — e — TL) x 2"
+ 7y

@ Solving Recurrence: T'(n) = 3T (n/2) + O(n)
o T(n) = O(n'#23) = O(n'5%)

Assumption n is a power of 2. Arrays are (-indexed.

multiply(A, B, n)

if n =1 then return (A[0]B]0])
Ap «+ A[0..n/2 = 1], Ay < A[n/2 .. n—1]
Bp <+ B[0..n/2—1],By < B[n/2..n—1]
CL — muItipIy(AL,BL,n/Q)
Cy < multiply(Ay, Bp,n/2)
CM — multlply(AL + AH; B + BH,TL/2>
C <+ array of (2n — 1) 0's
for i <~ 0ton—2do

Cli] - C[i] + Cypli]

Cli +n] < Cli + n] + Cyli]

Cli +n/2] < Cli+n/2] + Cupli] — CL[i] — Cyli]
: return C

© o NSOk Wy

— =
—= O

—_
N

© Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

4873

Closest pair
Convex hull
Matrix multiplication

FFT(Fast Fourier Transform): polynomial multiplication in
O(nlgn) time

Closest Pair

Input: n points in plane: (21, y1), (22,92),+ , (%n, Yn)
Output: the pair of points that are closest

Closest Pair

Input: n points in plane: (21, y1), (22,92),+ , (%n, Yn)
Output: the pair of points that are closest

Closest Pair

Input: n points in plane: (z1,41), (¥2,92), ", (Tn, Yn)
Output: the pair of points that are closest

@ Trivial algorithm: O(n?) running time

e Divide: Divide the points into two halves via a vertical line

51/73

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line

e Conquer: Solve two sub-instances recursively

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line
e Conquer: Solve two sub-instances recursively

@ Combine: Check if there is a closer pair between left-half and
right-half

......

.....

.....

52/73

.....

@ Each box contains at most one pair

52/73

......

......

......

......

.....

......

.....

@ Each box contains at most one pair
e For each point, only need to consider O(1) boxes nearby

52/73

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair
@ For each point, only need to consider O(1) boxes nearby
@ time for combine = O(n) (many technicalities omitted)

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair

@ For each point, only need to consider O(1) boxes nearby
@ time for combine = O(n) (many technicalities omitted)
@ Recurrence: T'(n) = 27T'(n/2) + O(n)

Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T'(n) = 2T (n/2) + O(n)

Running time: O(nlgn)

53,73

53,73

53,73

53,73

53,73

Input: two n X n matrices A and B
Output: C = AB

54/73

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
1. for i< 1tondo

2 for j < 1 ton do

3 Cli, 5] + 0

4: for £ < 1 ton do

5 Cli,j] < CIi, j] + Ali, k] x Blk, j]

6: return C

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
1. for i< 1tondo

2 for j < 1 ton do

3 Cli, 5] + 0

4: for £ < 1 ton do

5 Cli,j] < CIi, j] + Ali, k] x Blk, j]

6: return C

@ running time = O(n?)

Try to Use Divide-and-Conquer

n/2 n/2
A11 A12 71,/2 Bll BlZ 7L/2
A= B=
A21 A22 B21 BZ2

o O — AnBi + A1aBar A By + A2 By
Ao1 By + AgaBoy Ao Bia + Aga B

e matrix_multiplication(A, B) recursively calls
matrix_multiplication(A1, By1), matrix_-multiplication(A1z, Ba1),

Try to Use Divide-and-Conquer

n/2 n/2
Aqp | A1z [pn/2 By | B2

A= B =
Agy | Ao Bay | Bao

o O — AnBi + A1aBar A By + A2 By
Ao1 By + AgaBoy Ao Bia + Aga B

e matrix_multiplication(A, B) recursively calls

n/2

)

matrix_multiplication(A1, By1), matrix_-multiplication(A1z, Ba1),

@ Recurrence for running time: T'(n) = 8T(n/2) + O(n?)

e T'(n) =0(n?

e T(n) =8T(n/2) + O(n?)
@ Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

e New recurrence: T'(n) = 7T(n/2) + O(n?)

56,73

e T(n) =8T(n/2) + O(n?)

@ Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

e New recurrence: T'(n) = 7T(n/2) + O(n?)

e Solving Recurrence T'(n) = O(n'°827) = O(n?8%)

56,73

@ Divide-and-Conquer
© Counting Inversions

9 Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

57/73

@ The recursion-tree method
@ The master theorem

58,73

e T'(n) =2T(n/2)+ O(n)

59,/73

e T'(n) =2T(n/2)+ O(n)
| " |

/\

I R

‘ n/4‘ ‘ n/4‘ ‘ n/4‘ ‘ n/4‘

59,/73

e T'(n) =2T(n/2)+ O(n)
| " |

/\

I R

‘n/4‘ ‘n/4‘ ‘n/4‘ ‘n/4‘

@ Each level takes running time O(n)

59/73

e T'(n) =2T(n/2)+ O(n)
| " |

/\

I R

‘ n/4‘ ‘ n/4‘

i R

@ Each level takes running time O(n)
@ There are O(lgn) levels

59/73

e T'(n) =2T(n/2)+ O(n)
| " |

/\

I R

‘ n/4‘ ‘ n/4‘ ‘ n/4‘

R

@ Each level takes running time O(n)
@ There are O(Ign) levels
@ Running time = O(nlgn)

59/73

e T'(n)=3T(n/2) + O(n)

60,73

e T'(n)=3T(n/2) + O(n)

60,73

60,73

60,73

60,73

e Total running time at level ¢7

60/73

. . . n i [3\!
e Total running time at level i? 2 x 3' = (2)'n

60/73

@ Total running time at level i? 2 x 3" = (%)’n

2i
@ Index of last level?

60,73

@ Total running time at level i? 2 x 3" = (%)’n

21
@ Index of last level? lg, n

60,73

@ Total running time at level i? 2 x 3" = (%)’n

21
@ Index of last level? lg, n
@ Total running time?

60,73

Recursion-Tree Method

@ Total running time at level i? 2 x 3" = (%)Zn

2
@ Index of last level? Ig, n
e Total running time?

Z (g)" =0 (n (2)1) — 0(3") = O(n's:?),

e T(n)=3T(n/2) + O(n?)

61,73

61,73

e T(n)=3T(n/2) + O(n?)

61,73

61,73

61,73

@ Total running time at level ¢7

61,73

61,73

. . . 2 i (3 i 9
e Total running time at level ¢? (%) X 3" = (Z) n
@ Index of last level?

61,73

. . . 2 i (3\! 9
e Total running time at level ¢? (%) X 3" = (Z) n
@ Index of last level? 1g, n

61,73

. . R 2 . .
@ Total running time at level ¢7 (%) x 3 = (%)ZHZ
@ Index of last level? 1g, n

@ Total running time?

61,73

. . R 2 . .
@ Total running time at level ¢7 (%) x 3 = (%)an
@ Index of last level? 1g, n

@ Total running time?

61,73

. . R 2 . .
@ Total running time at level ¢7 (%) x 3 = (%)an
@ Index of last level? 1g, n

@ Total running time?

61,73

Master Theorem

Recurrences al|b|c time
T(n) =2T(n/2) + O(n) O(nlgn)
T(n) = 3T(n/2) +O(n) O(n'e23)
T(n) =3T(n/2) + O(n?) O(n?)

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

Master Theorem

Recurrences al|b|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+ O(n) O(n'e23)
T(n) =3T(n/2) + O(n?) O(n?)

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

Master Theorem

Recurrences al|b|c time
T(n) =2T(n/2)+ O(n) O(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n) =3T(n/2) + O(n?) O(n?)

N
N
—

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

if c <lg,a
T(n) = if c=1g,a
if c>lg,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

77 if c <lg,a
T(n) = if c=1g,a
if c>lg,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(nler @) if c <lg,a
T(n)= if c=1g,a
if c>lg,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(nler @) if c <lg,a
T(n)= if c=1g,a
77 if c>lg,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are

constants. Then,

O(n'er2)

if c <lg,a
if c=1g,a
if c>lg,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(nler @) if c <lg,a

T(n)=4777 if c=lg,a
O(n®) if ¢ >1g,a

Master Theorem

Recurrences al|lb|c time
T(n)=2T(n/2)+0(M) |2 |2]|1|O0(nlgn)
T(n)=3T(n/2)+0(n) |3]2]1| O(n's3)
T(n)=3T(n/2)+0®?) [3[2]2] O(n?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are

constants. Then,

O(n'er2)

T(n) = ¢ O(nlgn)

O(n®)

if c <lg,a
if c=1g,a
if c>lg,a

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T'(n) = 4T (n/2) + O(n?). Which Case?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T'(n) =4T(n/2) + O(n?). Case 2.

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n?lgn)

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
3T (n/2) + O(n). Which Case?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
3T (n/2) + O(n). Case 1.

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,

O(n'er2) if c <lg,a

T(n)=1< O(nlgn) ifc=Ilg,a
O(n°) if c>lgya

e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
3T(n/2) + O(n). Case 1. T'(n) = O(n'*2?)

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T'(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n's23)
e Ex: T'(n) =T(n/2) 4+ O(1). Which Case?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'e23)
@ Ex: T'(n) =T(n/2) + O(1). Case 2.

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'e23)
e Ex: T'(n) =T(n/2)+ O(1). Case 2. T'(n) = O(lgn)

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'e23)
e Ex: T'(n) =T(n/2)+ O(1). Case 2. T(n) = O(lgn)
e Ex: T(n) =2T(n/2) + O(n?). Which Case?

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'e23)
e Ex: T'(n) =T(n/2)+ O(1). Case 2. T(n) = O(lgn)
e Ex: T(n) = 2T(n/2) + O(n?). Case 3.

Theorem 7'(n) = aT'(n/b) + O(n°), where a > 1,b > 1,¢> 0 are
constants. Then,
O(n'er2) if c <lg,a
T(n)=1< O(nlgn) ifc=Ilg,a

O(n°) if c>lgya
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n®lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n'e23)
e Ex: T'(n) =T(n/2)+ O(1). Case 2. T(n) = O(lgn)
e Ex: T'(n) =2T(n/2) + O(n?). Case 3. T'(n) = O(n?)

1 node nt
a nodes
a? nodes n/bz) ‘ n/b2 n/b2 n/b2

64/73

1 node nt
a nodes
a? nodes n/bz) ‘ n/b2 n/b2 n/b2

64/73

Proof of Master Theorem Using Recursion Tree

T(n) = aT(n/b) + O(n°)

1 node n

a nodes pen’
. 2

a® nodes <,%> n¢
3 a)?, ¢
a’ nodes)

: 1
e ¢ <lg,a : bottom-level dominates: (&)*® " n¢ = nlsa

Proof of Master Theorem Using Recursion Tree

T(n) = aT(n/b) + O(n°)

1 node n

a nodes pen’
. 2

a® nodes <,%> n¢
3 a)?, ¢
a’ nodes)

: 1
e ¢ <lg,a : bottom-level dominates: (&)*® " n¢ = nlsa

@ ¢ =1lg,a : all levels have same time: n¢lg,n = O(nlgn)

Proof of Master Theorem Using Recursion Tree

T(n) = aT(n/b) + O(n°)

1 node n

a nodes pen’
. 2

a® nodes <,%> n¢
3 a)?, ¢
a’ nodes)

: 1
e ¢ <lg,a : bottom-level dominates: (&)*® " n¢ = nlsa

@ ¢ =1lg,a : all levels have same time: n¢lg,n = O(nlgn)
@ ¢ > lg,a : top-level dominates: O(n°)

© Divide-and-Conquer
© Counting Inversions

Q Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

65,73

(] FO = 0, Fl =1
1 Fn = Fn—l -+ Fn_z,Vn >2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,---

Input: integer n > 0
Output: F,

66,73

Fib(n)
1. ifn=20return 0

2. ifn=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

67/73

Fib(n)
1:
2:
3:

if n =0 return 0
if n=1return 1
return Fib(n — 1) + Fib(n — 2)

Q:

n?

Is the running time of the algorithm polynomial or exponential in

Exponential J

67/73

Fib(n)
1. ifn=20return 0

2. ifn=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential]

@ Running time is at least Q(F},)

67/73

Fib(n)
1. ifn=20return 0

2. ifn=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential]

@ Running time is at least Q(F},)

@ F, is exponential in n
67/73

1. Fl0] <0

2: F[l] — 1

3: for i <+ 2 ton do

4: Fli] + F[i — 1]+ F[i — 2]
5. return F'[n]

@ Dynamic Programming

68/73

Fib(n)
1. Fl0] <0
2: Fl1] « 1
3: for i < 2 ton do
4: Fli]« Fi—1]+ F[i - 2]
5: return F'[n]

@ Dynamic Programming

@ Running time =7

68/73

Fib(n)
1. F0] « 0
2: Fl1] « 1
3: for i < 2 ton do
4: F[i] + F[i — 1]+ F[i — 2]
5: return F[n]

Dynamic Programming
Running time = O(n)

68/73

power(n)
. 1 0

1: if n = 0 then return 01

2: R < power(|n/2])

3: R« RxR

4 if n is odd then R « R x (| é)
5. return R)
Fib(n)

1: if n =0 then return 0

2: M < power(n — 1)

3: return M[1][1]

70/73

power(n)

; 10
1: if n = 0 then return 01

2: R < power(|n/2])
33 R~ RXR

4 ifnisoddthenR(—Rx(} (1)>

5. return R

Fib(n)

1. if n =0 then return 0
2: M < power(n — 1)
3: return M[1][1]

@ Recurrence for running time?

power(n)

; 10
1: if n = 0 then return 01

2: R < power(|n/2])
33 R~ RXR

4 ifnisoddthenR(—Rx(} (1)>

5. return R

Fib(n)

1. if n =0 then return 0
2: M < power(n — 1)
3: return M[1][1]

@ Recurrence for running time? 7'(n) = T'(n/2) + O(1)

power(n)

; 10
1: if n = 0 then return 01

2: R < power(|n/2])
33 R~ RXR

4 ifnisoddthenR(—Rx(} (1)>

5. return R

Fib(n)
1. if n =0 then return 0
2: M < power(n — 1)
3: return M[1][1]

@ Recurrence for running time? 7'(n) = T'(n/2) + O(1)
e T'(n) =0(lgn)

71/73

Q: How many bits do we need to represent F'(n)? J

71/73

Q: How many bits do we need to represent F'(n)? J

A: O(n) J

71/73

Q: How many bits do we need to represent F'(n)? J

A: O(n) J

@ We can not add (or multiply) two integers of ©(n) bits in O(1)
time

71/73

Q: How many bits do we need to represent F'(n)? J

A: O(n) |

@ We can not add (or multiply) two integers of ©(n) bits in O(1)
time

@ Even printing F'(n) requires time much larger than O(lgn)

71/73

Running time = O(Ign): We Cheated!

Q: How many bits do we need to represent F'(n)?

A: O(n)

@ We can not add (or multiply) two integers of ©(n) bits in O(1)
time

@ Even printing F'(n) requires time much larger than O(lgn)

Fixing the Problem

To compute F,,, we need O(lgn) basic arithmetic operations on
integers

Summary: Divide-and-Conquer

e Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem

@ Merge sort, quicksort, count-inversions, closest pair, - - -:
T(n)=2T(n/2) +O(n) = T(n) = O(nlgn)

73/73

@ Merge sort, quicksort, count-inversions, closest pair, - - -:
T(n)=2T(n/2) +O(n) = T(n) = O(nlgn)

@ Integer Multiplication:
T(n) =3T(n/2) + O(n) = T(n) = O(n'e2?)

73/73

Summary: Divide-and-Conquer

@ Merge sort, quicksort, count-inversions, closest pair, - - -:

T(n) =2T(n/2)+ O(n) = T(n) = O(nlgn)
@ Integer Multiplication:
T(n) =3T(n/2) + O(n) = T(n) = O(n'e23)

e Matrix Multiplication:
T(n) = 7T (n/2) + O(n?) = T(n) = O(n's7)

Summary: Divide-and-Conquer

@ Merge sort, quicksort, count-inversions, closest pair, - - -:
T(n)=2T(n/2)+ O(n) = T(n) =0O(nlgn)

@ Integer Multiplication:
T(n) =3T(n/2) + O(n) = T(n) = O(n'e23)

@ Matrix Multiplication:
T(n) =7T(n/2) + O(n*) = T(n) = O(n's27)

@ Usually, designing better algorithm for “combine” step is key to
improve running time

	Divide-and-Conquer
	Counting Inversions
	Quicksort and Selection
	Quicksort
	Lower Bound for Comparison-Based Sorting Algorithms
	Selection Problem

	Polynomial Multiplication
	Other Classic Algorithms using Divide-and-Conquer
	Solving Recurrences
	Computing n-th Fibonacci Number

