Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

2/86

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.

3/86

Lemma Let 7'= (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n — 1 edges;

T is acyclic and has n — 1 edges;

T is minimally connected: removal of any edge disconnects it;
T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T' of GG with the minimum total weight

12

Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
@ Kruskal's Algorithm
@ Prim’s Algorithm

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

7/86

Q: Which edge can be safely included in the MST? J

A: The edge with the smallest weight (lightest edge). |

8,/86

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Assume the lightest edge ¢* is not in T’

There is a unique path in 7" connecting u and v
Remove any edge ¢ in the path to obtain tree 7’
w(e*) <w(e) = w(T") <w(T): T'is also a MST

lightest edge e*~

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g, h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*
Remove all edges (u,v) from E

For every edge (u,w) € E,w # v, change it to (u*,w)
For every edge (v,w) € F,w # u, change it to (u*,w)

May create parallel edges! E.g. : two edges (i, g*)

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
© Choose the lightest edge ¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected

MST-Greedy(G, w)

1: F 10

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in F' then
5 F+ FU{(u,v)}

6

. return (V, F)

13/86

Sets: {a,b,c,i, f,g,h,d, e}

14/86

Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
S, < the set in S containing u
S, < the set in S containing v
if S, # 95, then
F «+ FU{(u,v)}
S S\{SH\ S} U{S, U S}

return (V, F)

© o NS R e

—
=

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <«
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy, < the set in S containing u
S, < the set in § containing v
if 5, # S, then
F +— FU{(u,v)}
S S\{S P\ {Su} U{S. US,}

return (V, F)

© 0o Na kL

—
IS

Use union-find data structure to support @, @, @, @. O.

e V: ground set

@ We need to maintain a partition of V' and support following
operations:

o Check if w and v are in the same set of the partition
o Merge two sets in partition

17/86

o V={1,23--,16}
e Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4, 8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).

Union-Find Data Structure

SN

@ Q: how can we check if u and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r': par|r| < r’.

Union-Find Data Structure

root(v
root(v) &
1 if pCLT[U] = | then 2 return v
2 return v 3: else
3: else .
4 ar|v| <= root(par|v
4 return root(par|v]) port i)
5. return par|v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

root(v)
L. if par[v] = L then
2: return v
3: else
4 par[v] < root(parv])
5: return par|v]
&) () r
@l ©® O W
® oo O
©,

21/86

MST-Kruskal(G, w)

=
IS4

© o N R0

F«10
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
Sy < the set in S containing v
if 5, # 5, then
F+ FU{(u,v)}
S S\ {5\ {StU{S, U5}

return (V) F)

22/86

MST-Kruskal(G, w)

1. F 10

2: for every v € V do: parfv] < L

3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u,v) € E in the order do

G u' < root(u)

6: v' < root(v)

7: if «' v then

8: F + FU{(u,v)}

9: parfu'] < v

10: return (V) F)

0.0.0.0.0 takes time O(ma(n))

e a(n) is very slow-growing: a(n) < 4 for n < 10%,

Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i, ¢, f, g)
@ (e, f) isin the MST because no such cycle exists

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

25,86

Two Methods to Build a MST

© Start from F < (), and add edges to I’ one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge. J

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F\ {e}) is connected then
5 F«+ F\{e}
6: return (V, F)

28,86

29/86

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

30,86

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.

Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T'

@ Let e* be the lightest edge incident to a and e* connects a to
component '

Let e be the edge in T' connecting a to C
T' =T\ {e} U{e*} is a spanning tree with w(T") < w(T) O

33/86

Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: F <«

3: while S #V do

4: (u,v) < lightest edge between S and V' \ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F +— FU{(u,v)}

7: return (V, F)

@ Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er WU, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes.(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S

(13,¢)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ .S maintain
o djv] = minueS:(u,u)eEw(uv v):

the weight of the lightest edge between v and S
o m[v] = arg minyeg:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.

Prim’s Algorithm

MST-Prim(G, w)

—
=

© o NSa kL

s ¢— arbitrary vertex in G
S(—@ d(s) < 0 and d[v] < oo for every v € V '\ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])lu € V' \ {s}}

38,86

Prim’s Algorithm

For every v € V' \ .S maintain
o dv] = minyeg.(uv)er w(u,v):
the weight of the lightest edge between v and S
o 7[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

@ Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value

Prim’s Algorithm

MST-Prim(G, w)

1: s < arbitrary vertex in G
2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u <— vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, w[u))|u € V'\ {s}}

e 0N oG

Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s ¢— arbitrary vertex in G
: S+ 0,d(s) «+ 0 and d[v] < oo for every v € V' \ {s}
.) + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

0o Na R L

=
2

1

—

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) O(1) O(nlogn +m)

43/86

Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. J

(c, f) is in MST because of cut ({a,b,c,i},V \ {a,b,c,i})

°
@ (i,g) is not in MST because no such cut exists

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which e is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

46,86

algorithm ‘ graph ‘ weights ‘ SS7 ‘ running time
Simple DP DAG R SS O(n+m)
Dijkstra U/D | R SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

Input: (directed or undirected) graph G = (V, E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

48,86

Single Source Shortest Paths
Input: directed graph G = (V, E), s€ V
w:E = Ry
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight

Single Source Shortest Paths
Input: directed graph G = (V, E), s € V
w: B — Rsg
Output: 7[v],v € V' \ s: the parent of v in shortest path tree
d[v],v € V'\ s: the length of shortest path from s to v

50/86

Q: How to compute shortest paths from s when all edges have
weight 17

|

A: Breadth first search (BFS) from source s

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u, v) is equivalent to a pah of w(u,v)
unit-weight edges

; 4 ; phobohole

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(wu,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!

Shortest Path Algorithm by Running BFS Virtually
1: S < {s},d(s) <0
2: while S| < n do
3: find a v ¢ S that minimizes min {d[u] + w(u,v)}
u€S:(u,v)eEE
S+ Su{v}
dlv] ¢ minyes.(uvmer{du] + w(u,v)}

OIS

53/86

Virtual BFS: Example

Time 10

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

55,86

Dijkstra’s Algorithm

Dijkstra(G, w, s)

1: S« 0,d(s) < 0 and d[v] < oo for every v € V' \ {s}
2. while S+ V do

3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S

5 for each v € V' \ S such that (u,v) € E do
6 if d[u] + w(u,v) < d[v] then

7: d[v] + d[u] + w(u,v)

8: m[v] « u

9: return (d,)

@ Running time = O(n?)

Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1:

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3: () «+ empty queue, for each v € V: Q.insert(v, d[v])
4: while S #V do

5: u < @.extract_min()

6: S« SuU{u}

7 for each v € V'\ S such that (u,v) € E do

8: if dju] +w(u,v) < d[v] then

9: d[v] « d[u] + w(u,v), Q.decrease key(v, d[v])
10: m[v] + u

11: return (7, d)

Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s ¢— arbitrary vertex in G
: S+ 0,d(s) «+ 0 and d[v] < oo for every v € V' \ {s}
.) + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

0o Na R L

=
e

1

—

Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

61,86

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FE—>R
Output: shortest paths from s to all other vertices v € V/

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra’s algorithm does not work any more!

63,86

Q: What is the length of the shortest path from s to d? |

A: — J

Def. A negative cycle is a cycle in which the total weight of edges is
negative.

v

Dealing with Negative Cycles
@ assume the input graph does not contain negative cycles, or
@ allow algorithm to report “negative cycle exists”

Q: What is the length of the shortest simple path from s to d?

J

A: 1

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

algorithm ‘ graph ‘ weights ‘ SS7 ‘ running time
Simple DP DAG R SS O(n+m)
Dijkstra U/D | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), sV
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V'

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

e flv], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most ¢ edges

o v, £€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that uses
at most ¢ edges

o fla] =6
o f3a] =2

0 (=0,v=s
00 (=0,v#s
f)

] =

i { ity er (F41[u] + wu, v))

>0

Dynamic Programming: Example

length-0 edge

dynamic-programming (G, w, s)
1: fOs] - 0 and fO[v] «+ oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&«t— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fi) = £ u] + wlu, v)
7

- return (f"7Hv)])yey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length. [

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1. f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for{ <+ 1ton—1do

3 for each (u,v) € E do

4; if flu]—i—w(u v) < f[v] then

5

6

flo) = flul +w(u,v)

: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration
@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
e f[v] is always the length of some path from s to v

Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path
< fl]
< length of shortest s-v path using at most ¢ edges
@ Assuming there are no negative cycles:
length of shortest s-v path
= length of shortest s-v path using at most n — 1 edges
@ So, assuming there are no negative cycles, after iteration n — 1:

f[v] = length of shortest s-v path

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘

S
f] 0] 0062|007 | 0022 | co4

@ end of iteration 1: 0,2, 7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4
@ end of iteration 3: 0, 2, 7, -2, 4

@ Algorithm terminates in 3 iterations,
instead of 4.

73/86

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] = 0 and f[v] < oo for any v € V' \ {s}
2: for / <+ 1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© ©° N s w

output “negative cycle exists”

@ 7[v]: the parent of v in the shortest path tree

@ Running time = O(nm)

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

© Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Shortest Paths in Graphs with Negative Weights

@ All-Pair Shortest Paths and Floyd-Warshall

75,86

Input: directed graph G = (V, E),
w : E — R (can be negative)

Output: shortest path from u to v for every u,v € V.

1: for every starting point s € V' do
2: run Bellman-Ford(G, w, s)

@ Running time = O(n?m)

76/86

Summary of Shortest Path Algorithms we learned

algorithm ‘ graph ‘ weights ‘ SS? ‘ running time
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

Design a Dynamic Programming Algorithm

@ It is convenient to assume V ={1,2,3,--- ,n}
@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
o0 i#5.(i,5) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
e First try: f[i, j] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f¥[i, j]: length of shortest path from i to j that only uses vertices

{1,2,3, -+, k} as intermediate vertices

f0[1’4] =00

fl[174] =

fA1,4 =140 (1 —2-—4)
1,4 =9 (1—=3—=2—4)
1,4 =90 (1—=3—=2-—=4)
1,4 =60 (1—3—5—4)

79/86

0 i=j
w(i,7) = ¢ weight of edge (,7) i # j,(i,j) € FE
00 i#5,(0,5) ¢ E

e f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--+ ,k} as intermediate vertices
w(i,) k=0

Plial=1 #4104 L
m{ Pk g TR

Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy fFt = fF

4 for i < 1 ton do

5: for j < 1ton do

6 if fR7Li, k] + Rk, 9] < f*i, j] then
7 F*, 3] = G, k] + fR R, 4]

81,/86

Floyd-Warshall(G, w)

L f7—w

2: for k< 1ton do

3 copy [— f

4 for i< 1tondo

5: for j < 1ton do

6 if £l k] + f [k j] < fli,7] then
7 Sl] < F0 e R+ R g

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,5 € V, f[i, j] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

@ Running time = O(n?).

1 2 3 4 5
1 0 9040 | 30 | 00140 |
21 10 0 0040 50 00
316020 | 10 0 7060 | 20
4| o0 00 00 0 20
51 o 00 00 10 0

Recovering Shortest Paths

Floyd-Warshall(G, w)

1. f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k] + flk,j] < f[i, j] then
fli, 5] < fli, k] + flk, 5], 7l j] < &

D & 5

print-path(z, 7)
if 7[i, j] = L then then
if 1 # j then print(:,")")
else
print-path(i, 7[i, j]), print-path(=[i, 7], 7)

e e

Floyd-Warshall(G, w)

L f+ w, wi,j] < L foreveryi,jeV

2: for k< 1tondo

3: for i < 1 ton do

4: for j < 1tondo

5: if fli, k| + flk,j] < f[i, j] then

6: flis gl < fli. k] + flk, 5], wli, 5] < K
7: for k < 1 ton do

8: for i < 1 ton do

9: for j < 1tondo

10: if f[i,k] + flk,j] < f[i, j] then

11: report “negative cycle exists” and exit

85,86

Summary of Shortest Path Algorithms

algorithm ‘ graph ‘ weights ‘ SS7 ‘ running time
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Shortest Paths in Graphs with Negative Weights
	All-Pair Shortest Paths and Floyd-Warshall

