CSE 431/531: Algorithm Analysis and Design (Spring 2022) Graph Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)
- **[Single Source Shortest Paths](#page-172-0)** [Dijkstra's Algorithm](#page-203-0)
- ³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)
- ⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

Def. Given a connected graph $G = (V, E)$, a spanning tree $T = (V, F)$ of G is a sub-graph of G that is a tree including all vertices V .

Lemma Let $T = (V, F)$ be a subgraph of $G = (V, E)$. The following statements are equivalent:

- \bullet T is a spanning tree of G;
- \bullet T is acyclic and connected;
- T is connected and has $n 1$ edges;
- \bullet T is acyclic and has $n-1$ edges;
- \bullet T is minimally connected: removal of any edge disconnects it;
- \bullet T is maximally acyclic: addition of any edge creates a cycle;
- \bullet T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

Input: Graph $G = (V, E)$ and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G = (V, E)$ and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G = (V, E)$ and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- **•** Prim's Algorithm

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)
- **[Single Source Shortest Paths](#page-172-0)** [Dijkstra's Algorithm](#page-203-0)
- ³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Proof.

 \bullet Take a minimum spanning tree T

Proof.

- \bullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T

Proof.

- \bullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- There is a unique path in T connecting u and v

Proof.

- \bullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}

Proof.

- \bullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}

 $w(e^*) \leq w(e) \implies w(T') \leq w(T)$: T' is also a MST

Residual problem: find the minimum spanning tree that contains edge (q, h)

- Residual problem: find the minimum spanning tree that contains edge (q, h)
- Contract the edge (g, h)

- Residual problem: find the minimum spanning tree that contains edge (q, h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the \bullet contracted graph

Remove u and v from the graph, and add a new vertex u^*

- Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E

- Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)

- Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)

- Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- \bullet Choose the lightest edge e^* , add e^* to the spanning tree
- $\bullet\,$ Contract e^* and update G be the contracted graph

Repeat the following step until G contains only one vertex:

- \bullet Choose the lightest edge e^* , add e^* to the spanning tree
- $\bullet\,$ Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

Repeat the following step until G contains only one vertex:

- \bullet Choose the lightest edge e^* , add e^* to the spanning tree
- $\bullet\,$ Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

$MST-Greedv(G, w)$

$$
1: F \leftarrow \emptyset
$$

- 2: sort edges in E in non-decreasing order of weights w
- 3: for each edge (u, v) in the order do
- 4: if u and v are not connected by a path of edges in F then 5: $F \leftarrow F \cup \{(u, v)\}\$

6: return (V, F)

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$

Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

$MST-Kruskal(G, w)$

$$
1: F \leftarrow \emptyset
$$

$$
2: \mathcal{S} \leftarrow \{\{v\} : v \in V\}
$$

- 3: sort the edges of E in non-decreasing order of weights w
- 4: for each edge $(u, v) \in E$ in the order do

5:
$$
S_u \leftarrow
$$
 the set in S containing u

6:
$$
S_v \leftarrow
$$
 the set in S containing v

7: if
$$
S_u \neq S_v
$$
 then

8:
$$
F \leftarrow F \cup \{(u, v)\}
$$

9:
$$
\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
$$

10: return (V, F)

Running Time of Kruskal's Algorithm

$MST-Kruskal(G, w)$ 1: $F \leftarrow \emptyset$ 2: $\mathcal{S} \leftarrow \{\{v\} : v \in V\}$ 3: sort the edges of E in non-decreasing order of weights w 4: **for** each edge $(u, v) \in E$ in the order **do**
5: $S_u \leftarrow$ the set in S containing u 5: $S_u \leftarrow$ the set in S containing u
6: $S_u \leftarrow$ the set in S containing v 6: $S_v \leftarrow$ the set in S containing v
7: **if** $S_v \neq S_v$ then 7: if $S_u \neq S_v$ then
8: $F \leftarrow F \cup \{ (i \}$ 8: $F \leftarrow F \cup \{(u, v)\}$
9: $S \leftarrow S \setminus \{S_u\} \setminus \{\}$ $\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$ 10: return (V, F)

Use union-find data structure to support $\mathbf{Q}, \mathbf{\Theta}, \mathbf{\Theta}, \mathbf{\Theta}, \mathbf{\Theta}$.

- \bullet V: ground set
- We need to maintain a partition of V and support following operations:
	- Check if u and v are in the same set of the partition
	- Merge two sets in partition
- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

• par[i]: parent of i, $(par[i] = \perp$ if i is a root).

 \bullet Q: how can we check if u and v are in the same set?

- \bullet Q: how can we check if u and v are in the same set?
- A: Check if root (u) = root (v) .

- \bullet Q: how can we check if u and v are in the same set?
- A: Check if root (u) = root (v) .
- root(*u*): the root of the tree containing u

- \bullet Q: how can we check if u and v are in the same set?
- A: Check if root (u) = root (v) .
- root(*u*): the root of the tree containing u
- Merge the trees with root r and r' : $par[r] \leftarrow r'$.

- \bullet Q: how can we check if u and v are in the same set?
- A: Check if root (u) = root (v) .
- root(u): the root of the tree containing u
- Merge the trees with root r and r' : $par[r] \leftarrow r'$.

- 1: if $par[v] = \perp$ then
- 2: return v
- 3: else
- 4: return root(par[v])

root (v)

- 1: if $par[v] = \perp$ then
2: return v
- return v
- 3: else
- 4: return root(par[v])

• Problem: the tree might too deep; running time might be large

- 1: if $par[v] = \perp$ then
2: return v
- return v
- 3: else
- 4: return root(par[v])

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, \bullet saving time in the future.

- 1: if $par[v] = \perp$ then
2: return v
- return v
- 3: else
- 4: $par[v] \leftarrow root(par[v])$
5: **return** $par[v]$
- return $par[v]$

- 1: if $par[v] = \perp$ then
2: return v
- return v
- 3: else
- 4: $par[v] \leftarrow root(par[v])$
5: **return** $par[v]$
- return $par[v]$

1: $F \leftarrow \emptyset$ 2: $S \leftarrow \{\{v\} : v \in V\}$ 3: sort the edges of E in non-decreasing order of weights w 4: **for** each edge $(u, v) \in E$ in the order **do**
5: S_α ← the set in S containing *u* 5: $S_u \leftarrow$ the set in S containing u
6: $S_u \leftarrow$ the set in S containing v 6: $S_v \leftarrow$ the set in S containing v
7: **if** $S_v \neq S_v$ then if $S_u \neq S_v$ then 8: $F \leftarrow F \cup \{(u, v)\}$
9: $S \leftarrow S \setminus \{S_u\} \setminus \{\}$ $\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$ 10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \perp$
- 3: sort the edges of E in non-decreasing order of weights w
- 4: **for** each edge $(u, v) \in E$ in the order **do**
5: $u' \leftarrow \text{root}(u)$
- 5: $u' \leftarrow \text{root}(u)$
- 6: $v' \leftarrow \text{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
9: $par[u'] \leftarrow v'$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \perp$
- 3: sort the edges of E in non-decreasing order of weights w
- 4: **for** each edge $(u, v) \in E$ in the order **do**
5: $u' \leftarrow \text{root}(u)$
- 5: $u' \leftarrow \text{root}(u)$
- 6: $v' \leftarrow \text{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
9: $par[u'] \leftarrow v'$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

\bullet 2,0,0,0,0 takes time $O(m\alpha(n))$

 $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \perp$
- 3: sort the edges of E in non-decreasing order of weights w
- 4: **for** each edge $(u, v) \in E$ in the order **do**
5: $u' \leftarrow \text{root}(u)$
- 5: $u' \leftarrow \text{root}(u)$
- 6: $v' \leftarrow \text{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
9: $par[u'] \leftarrow v'$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

\bullet 2,0,0,0,0 takes time $O(m\alpha(n))$

- $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.
- Running time $=$ time for $\mathbf{S} = O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

 (i, g) is not in the MST because of cycle (i, c, f, g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

 (i, g) is not in the MST because of cycle (i, c, f, g) \bullet (e, f) is in the MST because no such cycle exists
Outline

[Minimum Spanning Tree](#page-1-0) • [Kruskal's Algorithm](#page-9-0) • [Reverse-Kruskal's Algorithm](#page-72-0) • [Prim's Algorithm](#page-99-0)

[Single Source Shortest Paths](#page-172-0) [Dijkstra's Algorithm](#page-203-0)

³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

■ Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree

- **1** Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- **1** Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- 2 Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

- **1** Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- 2 Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- Q: Which edge can be safely excluded from the MST?
- A: The heaviest non-bridge edge.

- **1** Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- 2 Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

$MST-Greedy(G, w)$

1: $F \leftarrow E$

- 2: sort E in non-increasing order of weights
- 3: for every e in this order do
- 4: **if** $(V, F \setminus \{e\})$ is connected **then**
5: $F \leftarrow F \setminus \{e\}$
- $F \leftarrow F \setminus \{e\}$

6: return (V, F)

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)
- **[Single Source Shortest Paths](#page-172-0)** [Dijkstra's Algorithm](#page-203-0)
- ³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)
- ⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

 $\overline{}$

Proof.

- \bullet Let T be a MST
- Consider all components obtained by removing a from T

Proof.

- \bullet Let T be a MST
- \bullet Consider all components obtained by removing a from T
- Let e^* be the lightest edge incident to a and e^* connects a to component C

 $\overline{}$

Proof.

- \bullet Let T be a MST
- Consider all components obtained by removing a from T
- Let e^* be the lightest edge incident to a and e^* connects a to component C

 $\overline{}$

 \bullet Let e be the edge in T connecting a to C

Proof.

- \bullet Let T be a MST
- Consider all components obtained by removing a from T
- Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C
- $T' = T \setminus \{e\} \cup \{e^*\}$ is a spanning tree with $w(T') \leq w(T)$

 $\overline{}$

$MST-Greedy1(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- $2: F \leftarrow \emptyset$
- 3: while $S \neq V$ do
4: $(u, v) \leftarrow$ light
- $(u, v) \leftarrow$ lightest edge between S and $V \setminus S$, where $u \in S$ and $v \in V \setminus S$

$$
5: \qquad S \leftarrow S \cup \{v\}
$$

- 6: $F \leftarrow F \cup \{(u, v)\}$
- 7: return (V, F)

$MST-Greedy1(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- $2: F \leftarrow \emptyset$
- 3: while $S \neq V$ do
4: $(u, v) \leftarrow$ light
- $(u, v) \leftarrow$ lightest edge between S and $V \setminus S$, where $u \in S$ and $v \in V \setminus S$

$$
5: \qquad S \leftarrow S \cup \{v\}
$$

6: $F \leftarrow F \cup \{(u, v)\}$

7: return (V, F)

• Running time of naive implementation: $O(nm)$

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

• $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S • $\pi[v] = \arg \min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi[v], v)$ is the lightest edge between v and S

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

• $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

$$
\begin{array}{l} \bullet \ \pi[v] = \arg \min_{u \in S: (u,v) \in E} w(u,v) \colon \\ (\pi[v],v) \ \text{ is the lightest edge between } v \ \text{and } S \end{array}
$$

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value
- Add $(\pi[u], u)$ to F
- Add u to S , update d and π values.

Prim's Algorithm

$MST-Prim(G, w)$

1: s ← arbitrary vertex in G 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: while $S \neq V$ do 4: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
5: $S \leftarrow S \cup \{u\}$ 5: $S \leftarrow S \cup \{u\}$
6: **for** each $v \in$ 6: **for** each $v \in V \setminus S$ such that $(u, v) \in E$ **do**
7: **if** $w(u, v) < d[v]$ **then** if $w(u, v) < d[v]$ then 8: $d[v] \leftarrow w(u, v)$ 9: $\pi[v] \leftarrow u$ 10: **return** $\{(u, \pi[u]) | u \in V \setminus \{s\}\}\$

For every $v \in V \setminus S$ maintain

 \bullet d[v] = min_{u∈S:(u,v)∈E} w(u, v): the weight of the lightest edge between v and S

\n- \n
$$
\pi[v] = \arg \min_{u \in S: (u,v) \in E} w(u, v)
$$
:\n $(\pi[v], v)$ is the lightest edge between v and S .\n
\n

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value
- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values.

For every $v \in V \setminus S$ maintain

 \bullet d[v] = min_{u∈S:(u,v)∈E} w(u, v): the weight of the lightest edge between v and S

\n- \n
$$
\pi[v] = \arg \min_{u \in S: (u, v) \in E} w(u, v)
$$
\n $(\pi[v], v)$ is the lightest edge between v and S \n
\n

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value extract_min
- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values. θ decrease key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert(v, key_value): insert an element v, whose associated key value is key_value .
- decrease_key(v, new_key_value): decrease the key value of an element v in queue to new_key_value
- \bullet extract_min(): return and remove the element in queue with the smallest key value

· · ·

Prim's Algorithm

$MST-Prim(G, w)$

1: s ← arbitrary vertex in G 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: 4: while $S \neq V$ do
5: $u \leftarrow$ vertex in 5: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
6: $S \leftarrow S \cup \{u\}$ 6: $S \leftarrow S \cup \{u\}$
7: **for** each $v \in$ **for** each $v \in V \setminus S$ such that $(u, v) \in E$ do 8: **if** $w(u, v) < d[v]$ then 9: $d[v] \leftarrow w(u, v)$
10: $\pi[v] \leftarrow u$ $\pi[v] \leftarrow u$ 11: **return** $\{(u, \pi[u]) | u \in V \setminus \{s\}\}\$

Prim's Algorithm Using Priority Queue

$MST-Prim(G, w)$

1: s ← arbitrary vertex in G 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow$ empty queue, for each $v \in V$: Q.insert $(v, d[v])$ 4: while $S \neq V$ do
5: $u \leftarrow Q$. extract 5: $u \leftarrow Q$. extract_min()
6: $S \leftarrow S \cup \{u\}$ 6: $S \leftarrow S \cup \{u\}$
7: **for** each $v \in$ **for** each $v \in V \setminus S$ such that $(u, v) \in E$ do 8: **if** $w(u, v) < d[v]$ then 9: $d[v] \leftarrow w(u, v)$, Q.decrease_key $(v, d[v])$
10: $\pi[v] \leftarrow u$ $\pi[v] \leftarrow u$ 11: **return** $\{(u, \pi[u]) | u \in V \setminus \{s\}\}\$

Running Time of Prim's Algorithm Using Priority Queue

$O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

 (c, f) is in MST because of cut $\big(\{a, b, c, i\}, V \setminus \{a, b, c, i\}\big)$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

 (c, f) is in MST because of cut $\big(\{a, b, c, i\}, V \setminus \{a, b, c, i\}\big)$ \bullet (i, q) is not in MST because no such cut exists

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- \bullet There is a cut in which e is the lightest edge
- \bullet There is a cycle in which e is the heaviest edge

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- \bullet There is a cut in which e is the lightest edge
- \bullet There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)

² [Single Source Shortest Paths](#page-172-0) [Dijkstra's Algorithm](#page-203-0)

³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

- DAG = directed acyclic graph $U =$ undirected $D =$ directed
- \bullet SS = single source AP = all pairs

s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$ $w: E \to \mathbb{R}_{\geq 0}$ **Output:** shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$ $w: E \to \mathbb{R}_{\geq 0}$ **Output:** shortest path from s to t

> $\frac{16}{16}$ 1 1 5 4 \mathcal{D} $\begin{array}{|c|c|c|}\n\hline\n\text{4} & \text{5} \\
> \hline\n\text{4} & \text{10}\n\end{array}$ s t

s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$ $w: E \to \mathbb{R}_{\geq 0}$ **Output:** shortest path from s to t

> $\frac{16}{16}$ 1 1 5 4 \mathcal{D} $\begin{array}{|c|c|c|}\n\hline\n4 & 5 \\
> \hline\n4 & 10\n\end{array}$ s t

Single Source Shortest Paths **Input:** (directed or undirected) graph $G = (V, E)$, $s \in V$ $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

 \bullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- \bullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- \bullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- \bullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths **Input:** directed graph $G = (V, E)$, $s \in V$ $w: E \to \mathbb{R}_{\geq 0}$ **Output:** $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree $d[v], v \in V \setminus s$: the length of shortest path from s to v

• An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

• An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow$ vertex from which v is visited
- 4: $d[v] \leftarrow$ index of the level containing v

• An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow$ vertex from which v is visited
- 4: $d[v] \leftarrow$ index of the level containing v
- Problem: $w(u, v)$ may be too large!

• An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
- 2: run BFS virtually

3:
$$
\pi[v] \leftarrow
$$
 vertex from which *v* is visited

- 4: $d[v] \leftarrow$ index of the level containing v
- Problem: $w(u, v)$ may be too large!

Shortest Path Algorithm by Running BFS Virtually

$$
1: S \leftarrow \{s\}, d(s) \leftarrow 0
$$

2: while
$$
|S| \leq n
$$
 do

3: find a
$$
v \notin S
$$
 that minimizes $\min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}$

4:
$$
S \leftarrow S \cup \{v\}
$$

5:
$$
d[v] \leftarrow \min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}
$$

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)

² [Single Source Shortest Paths](#page-172-0) [Dijkstra's Algorithm](#page-203-0)

³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

Dijkstra's Algorithm

Dijkstra (G, w, s)

- 1: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
- 2: while $S \neq V$ do
3: $u \leftarrow$ vertex in
- 3: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
4: add u to S
- add u to S
- 5: **for** each $v \in V \setminus S$ such that $(u, v) \in E$ do

6: if
$$
d[u] + w(u, v) < d[v]
$$
 then

7:
$$
d[v] \leftarrow d[u] + w(u, v)
$$

8: $\pi|v| \leftarrow u$

9: return (d, π)

Dijkstra's Algorithm

Dijkstra (G, w, s)

- 1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
- 2: while $S \neq V$ do
3: $u \leftarrow$ vertex in
- 3: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
4: add u to S
- add u to S
- 5: **for** each $v \in V \setminus S$ such that $(u, v) \in E$ do

6: if
$$
d[u] + w(u, v) < d[v]
$$
 then

7:
$$
d[v] \leftarrow d[u] + w(u, v)
$$

8: $\pi|v| \leftarrow u$

9: return (d, π)

Running time $= O(n^2)$

Improved Running Time using Priority Queue

Dijkstra(G, w, s)
1: $s \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
3: $Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v])$
4: while $S \neq V$ do
5: $u \leftarrow Q.\text{extract-min}()$
6: $S \leftarrow S \cup \{u\}$
7: for each $v \in V \setminus S$ such that $(u, v) \in E$ do
8: if $d[u] + w(u, v) < d[v]$ then
9: $d[v] \leftarrow d[u] + w(u, v), Q.\text{decrease_key}(v, d[v])$
10: $\pi[v] \leftarrow u$
11: return (π, d)

Recall: Prim's Algorithm for MST

$MST-Prim(G, w)$

1: s ← arbitrary vertex in G 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: Q ← empty queue, for each $v \in V$: Q.insert $(v, d[v])$ 4: while $S \neq V$ do
5: $u \leftarrow Q$. extract 5: $u \leftarrow Q$. extract_min()
6: $S \leftarrow S \cup \{u\}$ 6: $S \leftarrow S \cup \{u\}$
7: **for** each $v \in$ **for** each $v \in V \setminus S$ such that $(u, v) \in E$ do 8: **if** $w(u, v) < d[v]$ then 9: $d[v] \leftarrow w(u, v)$, Q.decrease_key $(v, d[v])$
10: $\pi[v] \leftarrow u$ $\pi[v] \leftarrow u$ 11: **return** $\{(u, \pi[u]) | u \in V \setminus \{s\}\}\$

Running time:

 $O(n)$ × (time for extract_min) + $O(m)$ × (time for decrease_key)

Priority-Queue		$extract_min$ decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n \log n + m)$

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)
- **[Single Source Shortest Paths](#page-172-0)** [Dijkstra's Algorithm](#page-203-0)

³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

• In transition graphs, negative weights make sense

- In transition graphs, negative weights make sense
- **•** If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)

- In transition graphs, negative weights make sense
- **•** If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

 $-$

Dealing with Negative Cycles

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

 $-$

Dealing with Negative Cycles

assume the input graph does not contain negative cycles, or \bullet

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

 $-$

Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or \bullet
- allow algorithm to report "negative cycle exists"

Q: What is the length of the shortest simple path from s to d ?

Q: What is the length of the shortest simple path from s to d ?

A: 1

Q: What is the length of the shortest simple path from s to d ?

A: 1

Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

- DAG = directed acyclic graph $U =$ undirected $D =$ directed
- \bullet SS = single source AP = all pairs

• first try: $f[v]$: length of shortest path from s to v

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$'s

Single Source Shortest Paths, Weights May be Negative **Input:** directed graph $G = (V, E)$, $s \in V$ assume all vertices are reachable from s $w: E \to \mathbb{R}$ **Output:** shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$'s
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

68/87 ⁷ ⁶ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

8

8

8

8

9

e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges

e $f^2[a] =$

68/87 $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

$$
\bullet \, f^2[a] =
$$

8

8

8

8

9

e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges

e $f^2[a] = 6$

68/87 $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

$$
\bullet \, f^2[a] = 6
$$

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] =$
 e $f^3[a] =$
 e f^8 $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

\n- $$
f^2[a] = 6
$$
\n- $f^3[a] =$
\n

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from *s* to *v* that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] = 2$

68/87 $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

$$
\bullet \ f^2[a] = 6
$$

 $f^3[a] = 2$

 $\begin{aligned} \mathcal{F}(\mathbf{r}) = \begin{cases} \mathcal{F}(\mathbf{r}) & \mathcal{F}(\mathbf{r}) = \begin{cases} \mathcal{F}(\mathbf{r}) & \mathcal{F}(\mathbf{r}) = \begin{cases} \mathcal{F}(\mathbf{r}) & \mathcal{F}(\mathbf{r}) = \mathcal{F}(\mathbf{r}) \\ \mathcal{F}(\mathbf{r}) & \mathcal{F}(\mathbf{r}) = \mathcal{F}(\mathbf{r}) \end{cases} \\ \mathcal{F}(\mathbf{r}) & \mathcal{F}(\mathbf{r}) = \begin{cases} \mathcal{F}(\mathbf{r}) & \mathcal{F}(\math$ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

$$
f^{\ell}[v] = \left\{\rule{0cm}{1.2cm}\right.
$$

$$
\ell = 0, v = s
$$

$$
\ell = 0, v \neq s
$$

$$
\ell > 0
$$

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] = 2$
 $v] = \begin{cases} 0 & \ell = 0, v = s \\ \ell = 0, v \neq s \\ \ell > 0 \end{cases}$ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

$$
f^{\ell}[v] = \left\{\rule{0cm}{1.2cm}\right.
$$

0

$$
\ell = 0, v = s
$$

$$
\ell = 0, v \neq s
$$

$$
\ell > 0
$$

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from *s* to *v* that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] = 2$
 $v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \ell > 0 & 68/87 \end{cases}$ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

$$
f^{\ell}[v] = \begin{cases} 0 \\ \infty \end{cases}
$$

0
\n
$$
\ell = 0, v = s
$$
\n
$$
\ell = 0, v \neq s
$$
\n
$$
\ell > 0
$$

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] = 2$
 $v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \min \left\{ \begin{array}{ccc} & \ell = 0, v \neq s \\ & \$ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

$$
f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \Bigg\{ \end{cases}
$$

0
\n
$$
\ell = 0, v = s
$$
\n
$$
\ell = 0, v \neq s
$$
\n
$$
\ell > 0
$$

⁷

8

8
 e $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$

length of shortest path from s to v that uses

at most ℓ edges
 e $f^2[a] = 6$
 e $f^3[a] = 2$
 $v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \min \left\{ \begin{array}{ccc} & \ell = 0, v \neq s \\ & \$ $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

 $f^{\ell-1}[v]$

$$
f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \Bigg\{ \end{cases}
$$

0
\n
$$
\ell = 0, v = s
$$
\n
$$
\ell = 0, v \neq s
$$
\n
$$
\min \left\{ \begin{array}{c} \ell = 0, v = s \\ \ell > 0 \end{array} \right.
$$

 $f^{\ell}[v], \ell \in \{0, 1, 2, 3 \cdots, n-1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

•
$$
f^2[a] = 6
$$

• $f^3[a] = 2$

$$
\begin{array}{ll}\n\mathbf{a} & \mathbf{b} \\
\hline\n\mathbf{b} & \mathbf{b} \\
\hline\n\mathbf{c} & \mathbf{b} \\
\hline\n\mathbf{c} & \mathbf{c} \\
\hline\n\mathbf{c} & \mathbf
$$

length-0 edge ^s ^a ^b ^c ^d $0)$ (∞) (∞) (∞) (∞) $\overline{0}$ 6 $8₁$ -3 -7 f^0 (0) ∞ f^0 f^1

length-0 edge ^s ^a ^b ^c ^d $0)$ (∞) (∞) (∞) (∞) $\overline{0}$ 6 $8₁$ -3 -7 f^0 (0) ∞ f^0 $f¹$ $\left(\begin{matrix} 1 \\ 0 \end{matrix} \right) \quad \left(\begin{matrix} 6 \\ 6 \end{matrix} \right)$

length-0 edge ^s ^a ^b ^c ^d $0)$ (∞) (∞) (∞) (∞) $\overline{0}$ 6 $8₁$ -3 -7 f^0 (0) ∞ f^0 $f¹$ 1 (0) (6) 2 7

length-0 edge ^s ^a ^b ^c ^d $0)$ (∞) (∞) (∞) (∞) $\overline{0}$ 6 8 -3 -7 f^0 (0) ∞ f^0 $f¹$ 1 (0) (6) (7) (∞) (∞)

69/87

69/87

69/87

dynamic-programming (G, w, s)

1:
$$
f^0[s] \leftarrow 0
$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ \n2: **for** $\ell \leftarrow 1$ to $n-1$ **do**\n3: **copy** $f^{\ell-1} \rightarrow f^{\ell}$ \n4: **for** each $(u, v) \in E$ **do**\n5: **if** $f^{\ell-1}[u] + w(u, v) < f^{\ell}[v]$ **then**\n6: $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u, v)$ \n7: **return** $(f^{n-1}[v])_{v \in V}$

dynamic-programming (G, w, s)

1:
$$
f^0[s] \leftarrow 0
$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ \n2: **for** $\ell \leftarrow 1$ to $n-1$ **do**\n3: **copy** $f^{\ell-1} \rightarrow f^{\ell}$ \n4: **for** each $(u, v) \in E$ **do**\n5: **if** $f^{\ell-1}[u] + w(u, v) < f^{\ell}[v]$ **then**\n6: $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u, v)$ \n7: **return** $(f^{n-1}[v])_{v \in V}$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n - 1$ edges

dynamic-programming (G, w, s)

1:
$$
f^0[s] \leftarrow 0
$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
\n2: **for** $\ell \leftarrow 1$ to $n - 1$ **do**
\n3: **copy** $f^{\ell-1} \rightarrow f^{\ell}$
\n4: **for** each $(u, v) \in E$ **do**
\n5: **if** $f^{\ell-1}[u] + w(u, v) < f^{\ell}[v]$ **then**
\n6: $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u, v)$

7: return
$$
(f^{n-1}[v])_{v \in V}
$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n - 1$ edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length.

dynamic-programming (G, w, s)

1:
$$
f^{\text{old}}[s] \leftarrow 0
$$
 and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
\n2: **for** $\ell \leftarrow 1$ to $n - 1$ **do**
\n3: **copy** $f^{\text{old}} \rightarrow f^{\text{new}}$
\n4: **for** each $(u, v) \in E$ **do**
\n5: **if** $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$ **then**
\n6: $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$
\n7: **copy** $f^{\text{new}} \rightarrow f^{\text{old}}$
\n8: **return** f^{old}

 f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors

dynamic-programming (G, w, s) 1: $f^{\text{old}}[s] \leftarrow 0$ and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ 2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\text{old}} \rightarrow f^{\text{new}}$ 3: copy $f^{\text{old}} \to f^{\text{new}}$ 4: **for** each $(u, v) \in E$ **do**
5: **if** $f^{\text{old}}[u] + w(u, v)$ 5: if $f^{\circ\lvert\mathrm{d}}[u]+w(u,v)< f^{\mathsf{new}}[v]$ then 6: f $\mathbb{R}^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$ 7: copy $f^{\text{new}} \to f^{\text{old}}$ 8: <code>return</code> $f^{\circ \mathsf{Id}}$

- f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

dynamic-programming (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

2: **for**
$$
\ell \leftarrow 1
$$
 to $n-1$ **do**

3: copy
$$
f \rightarrow f
$$

4: **for** each
$$
(u, v) \in E
$$
 do

5: if
$$
f[u] + w(u, v) < f[v]
$$
 then

6:
$$
f[v] \leftarrow f[u] + w(u, v)
$$

7: **copy**
$$
f \rightarrow f
$$

- f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

dynamic-programming (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
- 3: **for** each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

5:
$$
f[v] \leftarrow f[u] + w(u, v)
$$

- f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
- 3: **for** each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

5:
$$
f[v] \leftarrow f[u] + w(u, v)
$$

- f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
3: for each $(u, v) \in E$
- for each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

$$
5: \t f[v] \leftarrow f[u] + w(u, v)
$$

6: return f

• Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration

$$
{\sf Bellman\text{-}Ford}(G,w,s)
$$

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
3: for each $(u, v) \in E$
- **for** each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

5:
$$
f[v] \leftarrow f[u] + w(u, v)
$$

- Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

$$
{\sf Bellman\text{-}Ford}(G,w,s)
$$

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
3: for each $(u, v) \in E$
- **for** each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

$$
5: \t f[v] \leftarrow f[u] + w(u, v)
$$

- Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , $f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges

$$
{\sf Bellman\text{-}Ford}(G,w,s)
$$

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n 1$ do
3: for each $(u, v) \in E$
- **for** each $(u, v) \in E$ do

4: if
$$
f[u] + w(u, v) < f[v]
$$
 then

$$
5: \t f[v] \leftarrow f[u] + w(u, v)
$$

- Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , $f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- \bullet f[v] is always the length of some path from s to v

 \bullet After iteration ℓ :

```
length of shortest s-v path
\lt f[v]\leq length of shortest s-v path using at most \ell edges
```
• Assuming there are no negative cycles:

length of shortest s - v path

= length of shortest s-v path using at most $n - 1$ edges

• So, assuming there are no negative cycles, after iteration $n - 1$:

 $f[v] =$ length of shortest s-v path

vertices s a b c d f 0 2 7 2 4

 \bullet end of iteration 1: 0, 2, 7, 2, 4

vertices s a b c d f 0 2 7 2 4

 \bullet end of iteration 1: 0, 2, 7, 2, 4

vertices s a b c d f 0 2 7 2 4

 \bullet end of iteration 1: 0, 2, 7, 2, 4

vertices s a b c d f 0 2 7 2 4

vertices s a b c d f 0 2 7 2 4

vertices s a b c d f 0 2 7 -2 4

vertices s a b c d f 0 2 7 -2 4

vertices s a b c d f 0 2 7 -2 4

vertices s a b c d f 0 2 7 -2 4

vertices s a b c d f 0 2 7 -2 4

 \bullet end of iteration 1: 0, 2, 7, 2, 4 • end of iteration $2: 0, 2, 7, -2, 4$

- end of iteration 1: 0, 2, 7, 2, 4
- \bullet end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4

- \bullet end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2 , 4
- end of iteration 3: 0, 2, 7, -2, 4
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to *n* do
3: *updated* \leftarrow fals
- $-$ updated \leftarrow false

4: **for each**
$$
(u, v) \in E
$$
 do

5: if
$$
f[u] + w(u, v) < f[v]
$$
 then

6:
$$
f[v] \leftarrow f[u] + w(u, v)
$$

7:
$$
updated \leftarrow true
$$

8: if not
$$
updated
$$
, then return f

```
9: output "negative cycle exists"
```
Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to *n* do
3: *updated* \leftarrow fals
- 3: $updated \leftarrow false$
4: **for** each $(u, v) \in$
- for each $(u, v) \in E$ do

5: if
$$
f[u] + w(u, v) < f[v]
$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \pi[v] \leftarrow u$
7: $updated \leftarrow true$
- $updated \leftarrow true$
- 8: if not $updated$, then return f

9: output "negative cycle exists"

$\bullet \pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1:
$$
f[s] \leftarrow 0
$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to *n* do
3: *updated* \leftarrow fals
- $updated \leftarrow false$
- 4: **for** each $(u, v) \in E$ do

5: if
$$
f[u] + w(u, v) < f[v]
$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \pi[v] \leftarrow u$
7: $updated \leftarrow true$
- $updated \leftarrow true$
- 8: if not $updated$, then return f

9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree
- Running time $= O(nm)$

Outline

[Minimum Spanning Tree](#page-1-0)

- [Kruskal's Algorithm](#page-9-0)
- [Reverse-Kruskal's Algorithm](#page-72-0)
- [Prim's Algorithm](#page-99-0)
- **[Single Source Shortest Paths](#page-172-0)** [Dijkstra's Algorithm](#page-203-0)

³ [Shortest Paths in Graphs with Negative Weights](#page-231-0)

⁴ [All-Pair Shortest Paths and Floyd-Warshall](#page-336-0)

All Pair Shortest Paths

Input: directed graph
$$
G = (V, E)
$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All Pair Shortest Paths

Input: directed graph
$$
G = (V, E)
$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford (G, w, s)

All Pair Shortest Paths

Input: directed graph
$$
G = (V, E)
$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford (G, w, s)
- Running time = $O(n^2m)$

- DAG = directed acyclic graph $U =$ undirected $D =$ directed
- \bullet SS = single source AP = all pairs

• It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

• For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

• First try: $f[i, j]$ is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s
- \rightarrow $f^k[i,j]$: length of shortest path from i to j that only uses vertices $\{1, 2, 3, \cdots, k\}$ as intermediate vertices

Example for Definition of $f^k[i,j]$'s

 $f^0[1, 4] = \infty$ $f^1[1, 4] = \infty$ f^2 $(1 \rightarrow 2 \rightarrow 4)$ f^3 $(1 \rightarrow 3 \rightarrow 2 \rightarrow 4)$ $f^4[1, 4] = 90$ $(1 \to 3 \to 2 \to 4)$ f^5 $(1 \rightarrow 3 \rightarrow 5 \rightarrow 4)$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
f^{k}[i,j] = \begin{cases} k = 0 \\ k = 1, 2, \cdots, n \end{cases}
$$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
f^{k}[i,j] = \begin{cases} w(i,j) & k=0\\ k=1,2,\cdots,n \end{cases}
$$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
f^{k}[i,j] = \begin{cases} w(i,j) & k=0\\ \min \begin{cases} 1 & k=1,2,\cdots,n \end{cases} \end{cases}
$$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
f^{k}[i,j] = \begin{cases} w(i,j) & k=0\\ \min \begin{cases} & f^{k-1}[i,j] \end{cases} & k=1,2,\cdots,n \end{cases}
$$

$$
w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}
$$

$$
f^{k}[i,j] = \begin{cases} w(i,j) & k=0\\ \min \begin{cases} f^{k-1}[i,j] & k=1,2,\cdots,n \end{cases} \\ f^{k-1}[i,k] + f^{k-1}[k,j] & k=1,2,\cdots,n \end{cases}
$$

$\mathsf{Floyd\text{-}Warshall}(G,w)$

1:
$$
f^0 \leftarrow w
$$
\n2: **for** $k \leftarrow 1$ **to** n **do**\n3: **copy** $f^{k-1} \rightarrow f^k$ \n4: **for** $i \leftarrow 1$ **to** n **do**\n5: **for** $j \leftarrow 1$ **to** n **do**\n6: **if** $f^{k-1}[i,k] + f^{k-1}[k,j] < f^k[i,j]$ **then**\n7: $f^k[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]$

$\mathsf{Floyd\text{-}Warshall}(G,w)$

$$
\begin{array}{ll} \text{1:} & f^{\mathsf{old}} \leftarrow w \\ \text{2:} & \mathsf{for} \ k \leftarrow 1 \ \text{to} \ n \ \mathsf{do} \\ \text{3:} & \mathsf{copy} \ f^{\mathsf{old}} \rightarrow f^{\mathsf{new}} \\ \text{4:} & \mathsf{for} \ i \leftarrow 1 \ \text{to} \ n \ \mathsf{do} \\ \text{5:} & \mathsf{for} \ j \leftarrow 1 \ \text{to} \ n \ \mathsf{do} \\ \text{6:} & \mathsf{if} \ f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j] < f^{\mathsf{new}}[i,j] \ \mathsf{then} \\ \text{7:} & f^{\mathsf{new}}[i,j] \leftarrow f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j] \end{array}
$$

$\mathsf{Floyd\text{-}Warshall}(G,w)$

F loyd-Warshall (G,w)

Floyd-Warshall (G, w)

F loyd-Warshall (G, w)

Lemma Assume there are no negative cycles in G . After iteration k , for $i, j \in V$, $f[i, j]$ is exactly the length of shortest path from i to j that only uses vertices in $\{1, 2, 3, \cdots, k\}$ as intermediate vertices.

F loyd-Warshall (G, w)

Lemma Assume there are no negative cycles in G . After iteration k , for $i, j \in V$, $f[i, j]$ is exactly the length of shortest path from i to j that only uses vertices in $\{1, 2, 3, \cdots, k\}$ as intermediate vertices.

Running time = $O(n^3)$.

$$
\bullet \ \ i=2, \ k=1, \ j=3
$$

$$
\bullet \ \ i=2, \ k=1, \ j=3
$$

• $i = 1, k = 2, j = 4$

• $i = 1, k = 2, j = 4$

$$
\bullet \ \ i=3, \ k=2, \ j=1,
$$

$$
\bullet \ \ i=3, \ k=2, \ j=1,
$$

$$
\bullet \ \ i=3, \ k=2, \ j=4
$$

$$
\bullet \ \ i=3, \ k=2, \ j=4
$$

$$
\bullet \ \ i=1,\ k=3,\ j=2
$$

$$
\bullet \ \ i=1,\ k=3,\ j=2
$$

Recovering Shortest Paths

Recovering Shortest Paths

print-path (i, j)

- 1: if $\pi[i, j] = \perp$ then then
2: if $i \neq j$ then print(*i*)
- **if** $i \neq j$ then print $(i, "")$

3: else

4: print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

Detecting Negative Cycles

- DAG = directed acyclic graph $U =$ undirected $D =$ directed
- \bullet SS = single source AP = all pairs