Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

2/28

Examples of Graphs

Figure: Road Networks

MM
b RS,
\‘m,/

Figure: Social Networks Figure: Transition Graphs

@ V: set of vertices (nodes);

e E: pairwise relationships among V;

o (undirected) graphs: relationship is symmetric, E contains subsets of
size 2

4/28

(Undirected) Graph G = (V, E)

LN N

e V: set of vertices (nodes);
o V'=1{1,2,3,4,5,6,7,8}
@ [: pairwise relationships among V/;

o (undirected) graphs: relationship is symmetric, E' contains subsets of
size 2

o F={{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{3,7}, {3, 8},
{4,5},{5,6},{7,8}}

e V: set of vertices (nodes);
o V={1,2,3,4,56,7,8}
e [pairwise relationships among V;

o directed graphs: relationship is asymmetric, E contains ordered pairs

4/28

Directed Graph G = (V| E)

e V: set of vertices (nodes);
o V={1,2,3,4,56,7,8}
e [pairwise relationships among V;

e directed graphs: relationship is asymmetric, F contains ordered pairs
o B=1{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8),
(4,5), (5,6),(6,5),(8,7)}

@ For (undirected) graphs, we often use (7, j) to denote the set
{i, 7}

@ We call (i,7) an unordered pair; in this case (i,j) = (j,1).

(1) (1)
7N

(2} (3)
eA@ ‘@

o E=1{(1,2),(1,3),(2,3),(2,4),(2,5).(3,5),(3,7), (3,8),
(4,5),(5,6),(7,8)}

5,28

@ Social Network : Undirected
@ Transition Graph : Directed
@ Road Network : Directed or Undirected

@ Internet : Directed or Undirected

1 2 3

AN

0 N U e W N =
oS O O O O = = O
(=R i =R
i = R N
c oo~ o o~ o |~
©C © = O = B = O |wm
o o O B O O O O | o
- o o o o ~ o o |~
o = ©O ©O O = O © |0

@ Adjacency matrix
e n x n matrix, Afu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected

7/28

Representation of Graphs

o e 1: 24—{3] 6: [5]

A 2 O+Bi+0+5 7 BE

0 e‘

e e e 4: 23—5] 8 BT
(6) 5 [3—>31+A—+5]

@ Adjacency matrix
e n x n matrix, Alu,v] = 1if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected
@ Linked lists
e For every vertex v, there is a linked list containing all neighbours of v.

Representation of Graphs

Q 1:[2]3) 6[5]

(D)
@Ae 2 7:[3]8]
Av 3:[1]2[5]7]8] 8
(5 (® B
e 5:[2]3]4]6) d:(2,4,5,2,4,1,2,2)

@ Adjacency matrix
e n x n matrix, Alu,v] = 1if (u,v) € E and Alu,v] = 0 otherwise
e A is symmetric if graph is undirected
@ Linked lists
e For every vertex v, there is a linked list containing all neighbours of v.
e When graph is static, can use array of variant-length arrays.

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?)

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1)

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(dy,)

time to list all neighbours of v | O(n)

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)
time to check (u,v) € E O(1) O(dy,)
time to list all neighbours of v | O(n) O(dy)

© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

9/28

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

e Breadth-First Search (BFS)

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢
o Breadth-First Search (BFS)
o Depth-First Search (DFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ L;.; contains all nodes that are not in LoULU---UL; and
have an edge to a vertex in L;

11/28

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ L;; contains all nodes that are not in Lo U L; U---U Lj and
have an edge to a vertex in L;

11/28

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ L;; contains all nodes that are not in Lo U L; U---U Lj and
have an edge to a vertex in L;

11/28

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ L;; contains all nodes that are not in Lo U L; U---U Lj and
have an edge to a vertex in L;

11/28

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ L;; contains all nodes that are not in Lo U L; U---U Lj and
have an edge to a vertex in L;

11/28

Implementing BFS using a Queue

BFS(s)
1. head + 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbours u of v do

6: if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u
8 mark u as “visited”

@ Running time: O(n + m).

13/28

13/28

13/28

13/28

13/28

13/28

13/28

tail

a a head

13/28

tail

e 6 head

13/28

tail

e 6 head

13/28

tail

e L
©®

13/28

tail

head

13/28

tail

head

13/28

tail

head

13/28

tail

head

13/28

tail

head

13/28

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

DFS(s)
1. mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if w is unvisited then recursive-DFS(u)

15/28

© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

16/28

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve L,u€eR.

@ Taking an arbitrary vertex s € V'

18/28

e Taking an arbitrary vertex s € V'
@ Assuming s € L w.l.o.g

18/28

e Taking an arbitrary vertex s € V'
@ Assuming s € L w.l.o.g
@ Neighbors of s must be in R

18/28

@ Taking an arbitrary vertex s € V'

@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L

18/28

@ Taking an arbitrary vertex s € V'

@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L
° -

18/28

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G’ contains multiple connected components, repeat above
algorithm for each component

19/28

19/28

19/28

19/28

19/28

19/28

11111

11111

11111

11111

bad edges!

19/28

Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbours u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as “visited”

Testing Bipartiteness using BFS

test-bipartiteness(s)

[y

= =
N 2o

© 0N R w

head <+ 1,tail + 1, queue([l] + s
mark s as “visited”
color[s] < 0
while head < tail do
v < queuelhead), head < head + 1
for all neighbours u of v do
if w is "“unvisited” then
tail + tail + 1, queue[tail] = u
mark u as “visited”
color|u] <— 1 — color[v]
else if color[u] = color|[v] then
print(“G is not bipartite”) and exit

mark all vertices as “unvisited”

: for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite")

2 2 RPN

21/28

mark all vertices as “unvisited”

. for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite”)

2 2 RPN

Obs. Running time of algorithm = O(n + m) J

21/28

© Graphs

© Connectivity and Graph Traversal
@ Testing Bipartiteness

© Topological Ordering

22/28

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ANAN
e

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ANAN
e

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

24/28

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN

%%

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

25,28

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible? J

25/28

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

e Maintain a queue (or stack) of vertices v with d, =0

topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy +— d,+1
: S+ {v:d,=0},i«<0
while S # () do
v < arbitrary vertex in S, S+ S\ {v}
i< i+1, m(v) i
for every u such that (v,u) € E do
10: dy+—d,—1
1 if d, =0 then add uto S
12: if © < n then output “not a DAG"

© 0N g s

@ S can be represented using a queue or a stack
@ Running time = O(n + m)

DS Queue Stack

Initialization | head < 1, tail < 0 | top < 0

Non-Empty? | head < tail top > 0
Add(v) tail < tail + 1 top < top + 1
Sltail] v Stop] < v
Retrieve v | v < S[head] v < S[top]

head < head + 1 top < top — 1

27/28

28,28

28,28

28,28

head

queue:|a|b|c| | | | |

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

28,28

	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering

