
CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/28

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering



3/28

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs



4/28

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains subsets of
size 2

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}



4/28

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains subsets of
size 2
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}



4/28

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

directed graphs: relationship is asymmetric, E contains ordered pairs

E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}



4/28

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

directed graphs: relationship is asymmetric, E contains ordered pairs
E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}



5/28

Abuse of Notations

For (undirected) graphs, we often use (i, j) to denote the set
{i, j}.
We call (i, j) an unordered pair; in this case (i, j) = (j, i).

1

2 3

4 5

7

8

6

E = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8),
(4, 5), (5, 6), (7, 8)}



6/28

Social Network : Undirected

Transition Graph : Directed

Road Network : Directed or Undirected

Internet : Directed or Undirected



7/28

Representation of Graphs

1

2 3

4 5

7

8

6

0 1

1 0

1 0

1 1

1 1

0 1

0 0

0 0

0 0

1 0

0 0

0 0

1 0

1 0

1 1

0 0

0 1

0 0

1 1

0 0

0 0

0 0

1 0

1 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Adjacency matrix

n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists

For every vertex v, there is a linked list containing all neighbours of v.

When graph is static, can use array of variant-length arrays.



7/28

Representation of Graphs

1

2 3

4 5

7

8

6

2 3

1 3

1 2

2 5

5

3 8

8

3 7

2 3

5 7

4 5

4 6

1:

2:

3:

4:

5:

6:

7:

8:

Adjacency matrix

n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists

For every vertex v, there is a linked list containing all neighbours of v.

When graph is static, can use array of variant-length arrays.



7/28

Representation of Graphs

1

2 3

4 5

7

8

6

1:

2:

3:

4:

5:

6:

7:

8:

2 3

1 3 4 5

1 2 85 7

2 5

2 3 4 6

5

3 8

3 7

d : (2, 4, 5, 2, 4, 1, 2, 2)

Adjacency matrix

n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists

For every vertex v, there is a linked list containing all neighbours of v.
When graph is static, can use array of variant-length arrays.



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage

O(n2) O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2)

O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E

O(1) O(du)

time to list all neighbours of v

O(n) O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1)

O(du)

time to list all neighbours of v

O(n) O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v

O(n) O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n)

O(dv)



8/28

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n) O(dv)



9/28

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering



10/28

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)



10/28

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)



10/28

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)

Depth-First Search (DFS)



10/28

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)



11/28

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj



11/28

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6



11/28

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6



11/28

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6



11/28

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6



12/28

Implementing BFS using a Queue

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≤ tail do
4: v ← queue[head], head← head+ 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: tail← tail + 1, queue[tail] = u
8: mark u as “visited”

Running time: O(n+m).



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

1



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

1



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

21



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 31



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 31



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 41



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 4 51



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 51



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 71



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 7 81



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 81



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 81



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61



13/28

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



14/28

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



15/28

Implementing DFS using Recurrsion

DFS(s)

1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if u is unvisited then recursive-DFS(u)



16/28

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering



17/28

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) ∈ E, we have either u ∈ L, v ∈ R
or v ∈ L, u ∈ R.



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V

Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



18/28

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness



19/28

Test Bipartiteness

bad edges!



20/28

Testing Bipartiteness using BFS

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≤ tail do
4: v ← queue[head], head← head+ 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: tail← tail + 1, queue[tail] = u
8: mark u as “visited”



20/28

Testing Bipartiteness using BFS

test-bipartiteness(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: color[s]← 0
4: while head ≤ tail do
5: v ← queue[head], head← head+ 1
6: for all neighbours u of v do
7: if u is “unvisited” then
8: tail← tail + 1, queue[tail] = u
9: mark u as “visited”
10: color[u]← 1− color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit



21/28

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v ∈ V do
3: if v is “unvisited” then
4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)



21/28

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v ∈ V do
3: if v is “unvisited” then
4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)



22/28

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering



23/28

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)

a b

c d e f

g h i



23/28

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)

1

2

3

4 5

6 7

89



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

a b

c d e f

g h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89



24/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89



25/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0



25/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0



25/28

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0



26/28

topological-sort(G)

1: let dv ← 0 for every v ∈ V
2: for every v ∈ V do
3: for every u such that (v, u) ∈ E do
4: du ← du + 1

5: S ← {v : dv = 0}, i← 0
6: while S 6= ∅ do
7: v ← arbitrary vertex in S, S ← S \ {v}
8: i← i+ 1, π(v)← i
9: for every u such that (v, u) ∈ E do
10: du ← du − 1
11: if du = 0 then add u to S

12: if i < n then output “not a DAG”

S can be represented using a queue or a stack

Running time = O(n+m)



27/28

S as a Queue or a Stack

DS Queue Stack

Initialization head← 1, tail← 0 top← 0

Non-Empty? head ≤ tail top > 0

Add(v) tail← tail + 1
S[tail]← v

top← top+ 1
S[top]← v

Retrieve v v ← S[head]
head← head+ 1

v ← S[top]
top← top− 1



28/28

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

head

tail

a



28/28

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

head

tail

a



28/28

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

head

tail

a



28/28

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

head

tail

a b c



28/28

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

head

tail

a b c



28/28

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

head

tail

a b c



28/28

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

head

tail

a b c



28/28

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

head

tail

a b c



28/28

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

head

tail

a b c d f



28/28

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

head

tail

a b c d f



28/28

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

head

tail

a b c d f



28/28

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

head

tail

a b c d ef



28/28

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

head

tail

a b c d ef



28/28

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

head

tail

a b c d ef



28/28

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

head

tail

a b c d ef



28/28

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

head

tail

a b c d ef



28/28

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

head

tail

a b c d ef g



28/28

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

head

a b c d ef g

tail


	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering

