CSE 431/531: Algorithm Analysis and Design (Spring 2022) Greedy Algorithms Lecturer: Shi Li Department of Computer Science and Engineering University at Buffalo #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. • However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. • However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. - However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. - f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0. #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. - However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. - f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0. - convention: polynomial time = efficient #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. - However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. - f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0. - convention: polynomial time = efficient #### Goals of algorithm design #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. - However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. - f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0. - convention: polynomial time = efficient #### Goals of algorithm design Design efficient algorithms to solve problems #### Trivial Algorithm for an Optimization Problem Enumerate all valid solutions, compare them and output the best one. - However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large. - f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0. - convention: polynomial time = efficient #### Goals of algorithm design - Design efficient algorithms to solve problems - Design more efficient algorithms to solve problems # Common Paradigms for Algorithm Design - Greedy Algorithms - Divide and Conquer - Dynamic Programming # Common Paradigms for Algorithm Design - Greedy Algorithms - Divide and Conquer - Dynamic Programming - Greedy algorithms are often for optimization problems. # Common Paradigms for Algorithm Design - Greedy Algorithms - Divide and Conquer - Dynamic Programming - Greedy algorithms are often for optimization problems. - They often run in polynomial time due to their simplicity. - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) **Def.** A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy. ### Outline - Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - Data Compression and Huffman Code - Summary ## Box Packing Input: n boxes of capacities c_1, c_2, \cdots, c_n m items of sizes s_1, s_2, \cdots, s_m Can put at most 1 item in a box Item j can be put into box i if $s_j \leq c_i$ Output: A way to put as many items as possible in the boxes. ## **Box Packing** **Input:** n boxes of capacities c_1, c_2, \cdots, c_n m items of sizes s_1, s_2, \cdots, s_m Can put at most 1 item in a box Item j can be put into box i if $s_j \leq c_i$ **Output:** A way to put as many items as possible in the boxes. #### Example: • Box capacities: 60, 40, 25, 15, 12 • Item sizes: 45, 42, 20, 19, 16 • Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25$ - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy ## Designing a Reasonable Strategy for Box Packing • Q: Take box 1. Which item should we put in box 1? - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy ## Designing a Reasonable Strategy for Box Packing - Q: Take box 1. Which item should we put in box 1? - A: The item of the largest size that can be put into the box. - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem **Lemma** The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold. - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem **Lemma** The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold. • Intuition: putting the item gives us the easiest residual problem. - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem **Lemma** The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold. - Intuition: putting the item gives us the easiest residual problem. - formal proof via exchanging argument: #### Proof. • Let j =largest item that box 1 can hold. #### Proof. - Let j = largest item that box 1 can hold. - ullet Take any optimum solution S. If j is put into Box 1 in S, done. #### Proof. - Let j = largest item that box 1 can hold. - ullet Take any optimum solution S. If j is put into Box 1 in S, done. - ullet Otherwise, assume this is what happens in S: #### Proof. - Let j = largest item that box 1 can hold. - ullet Take any optimum solution S. If j is put into Box 1 in S, done. - ullet Otherwise, assume this is what happens in S: • $s_{j'} \leq s_j$, and swapping gives another solution S' #### Proof. - Let j = largest item that box 1 can hold. - ullet Take any optimum solution S. If j is put into Box 1 in S, done. - ullet Otherwise, assume this is what happens in S: - $s_{j'} \leq s_j$, and swapping gives another solution S' - S' is also an optimum solution. In S', j is put into Box 1. • Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm. • Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm. #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm. #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem - Trivial: we decided to put Item j into Box 1, and the remaining instance is obtained by removing Item j and Box 1. - 1: while the instance is non-trivial do - 2: make the choice using the greedy strategy - 3: reduce the instance #### Greedy Algorithm for Box Packing - 1: $T \leftarrow \{1, 2, 3, \cdots, m\}$ - 2: **for** $i \leftarrow 1$ to n **do** - 3: **if** some item in T can be put into box i **then** - 4: $j \leftarrow$ the largest item in T that can be put into box i - 5: print("put item j in box i") - 6: $T \leftarrow T \setminus \{j\}$ - 1: while the instance is non-trivial do - 2: make the choice using the greedy strategy - 3: reduce the instance **Lemma** Generic algorithm is correct if and only if the greedy strategy is safe. - 1: while the instance is non-trivial do - 2: make the choice using the greedy strategy - 3: reduce the instance **Lemma** Generic algorithm is correct if and only if the greedy strategy is safe. • Greedy strategy is safe: we will not miss the optimum solution - 1: while the instance is non-trivial do - 2: make the choice using the greedy strategy - 3: reduce
the instance **Lemma** Generic algorithm is correct if and only if the greedy strategy is safe. - Greedy strategy is safe: we will not miss the optimum solution - Greedy stretegy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable. #### Greedy Algorithm - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Greedy Algorithm - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem #### Greedy Algorithm - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem **Def.** A strategy is "safe" if there is always an optimum solution that is "consistent" with the decision made according to the strategy. # Exchange argument: Proof of Safety of a Strategy - ullet let S be an arbitrary optimum solution. - \bullet if S is consistent with the greedy choice, done. - \bullet otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice. # Exchange argument: Proof of Safety of a Strategy - \bullet let S be an arbitrary optimum solution. - if S is consistent with the greedy choice, done. - otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice. - The procedure is not a part of the algorithm. #### Outline - 1 Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - Data Compression and Huffman Code - Summary #### Interval Scheduling **Input:** n jobs, job i with start time s_i and finish time f_i i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint Output: A maximum-size subset of mutually compatible jobs #### Interval Scheduling **Input:** n jobs, job i with start time s_i and finish time f_i i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint Output: A maximum-size subset of mutually compatible jobs • Which of the following strategies are safe? - Which of the following strategies are safe? - Schedule the job with the smallest size? - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Schedule the job with the earliest finish time? - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Schedule the job with the earliest finish time? Yes! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Schedule the job with the earliest finish time? Yes! - Which of the following strategies are safe? - Schedule the job with the smallest size? No! - Schedule the job conflicting with smallest number of other jobs? No! - Schedule the job with the earliest finish time? Yes! **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. #### Proof. ullet Take an arbitrary optimum solution S S: **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. #### Proof. - Take an arbitrary optimum solution S - If it contains j, done S: **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. - ullet Take an arbitrary optimum solution S - If it contains j, done **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. - Take an arbitrary optimum solution S - If it contains j, done - Otherwise, replace the first job in S with j to obtain another optimum schedule S'. **Lemma** It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled. - ullet Take an arbitrary optimum solution S - If it contains j, done - ullet Otherwise, replace the first job in S with j to obtain another optimum schedule S'. - What is the remaining task after we decided to schedule *j*? - Is it another instance of interval scheduling problem? - What is the remaining task after we decided to schedule *j*? - Is it another instance of interval scheduling problem? Yes! - What is the remaining task after we decided to schedule j? - Is it another instance of interval scheduling problem? Yes! - What is the remaining task after we decided to schedule *j*? - Is it another instance of interval scheduling problem? Yes! - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$ - 5: return S ### $\mathsf{Schedule}(s, f, n)$ ``` 1: A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset 2: while A \neq \emptyset do 3: j \leftarrow \arg\min_{j' \in A} f_{j'} 4: S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\} 5: return S ``` Running time of algorithm? ### $\mathsf{Schedule}(s, f, n)$ ``` 1: A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset 2: while A \neq \emptyset do ``` - 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} > f_i\}$ - 5: return S #### Running time of algorithm? • Naive implementation: $O(n^2)$ time ### Schedule(s, f, n) - 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$ - 2: while $A \neq \emptyset$ do - 3: $j \leftarrow \arg\min_{i' \in A} f_{i'}$ - 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_i\}$ - 5: return S #### Running time of algorithm? - Naive implementation: $O(n^2)$ time - Clever implementation: $O(n \lg n)$ time - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - 4: if $s_i \ge t$ then - 5: $S \leftarrow S \cup \{j\}$ - 6: $t \leftarrow f_j$ - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{j\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs
according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - 4: if $s_i \geq t$ then - 5: $S \leftarrow S \cup \{j\}$ - 6: $t \leftarrow f_j$ - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - 4: if $s_i \ge t$ then - 5: $S \leftarrow S \cup \{j\}$ - 6: $t \leftarrow f_i$ - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{j\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{j\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{j\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S - 1: sort jobs according to f values - 2: $t \leftarrow 0$, $S \leftarrow \emptyset$ - 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do** - if $s_i \geq t$ then 4: - $S \leftarrow S \cup \{i\}$ 5: - $t \leftarrow f_i$ 6: - 7: return S #### Outline - 1) Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - Data Compression and Huffman Code - Summary - ullet Cache that can store k pages - Sequence of page requests - ullet Cache that can store k pages - Sequence of page requests - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. cache - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. cache - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - ullet Cache that can store k pages - Sequence of page requests - Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary. - Cache hit happens if requested page already in cache. - Goal: minimize the number of cache misses. 2 misses = 6 ### A Better Solution for Example **Input:** k: the size of cache $n: \mathsf{number} \ \mathsf{of} \ \mathsf{pages}$ $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests **Output:** $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means We use [n] for $\{1, 2, 3, \dots, n\}$. evicting empty page) **Input:** k: the size of cache We use [n] for $\{1,2,3,\cdots,n\}$. n: number of pages $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests **Output:** $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page) - Offline Caching: we know the whole sequence ahead of time. - Online Caching: we have to make decisions on the fly, before seeing future requests. **Input:** k: the size of cache n: number of pages We use [n] for $\{1, 2, 3, \dots, n\}$. $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests **Output:** $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page) - Offline Caching: we know the whole sequence ahead
of time. - Online Caching: we have to make decisions on the fly, before seeing future requests. Q: Which one is more realistic? **Input:** k: the size of cache n: number of pages We use [n] for $\{1, 2, 3, \dots, n\}$. $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests **Output:** $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page) - Offline Caching: we know the whole sequence ahead of time. - Online Caching: we have to make decisions on the fly, before seeing future requests. Q: Which one is more realistic? A: Online caching - Offline Caching: we know the whole sequence ahead of time. - Online Caching: we have to make decisions on the fly, before seeing future requests. Q: Which one is more realistic? **A:** Online caching **Q:** Why do we study the offline caching problem? - Offline Caching: we know the whole sequence ahead of time. - Online Caching: we have to make decisions on the fly, before seeing future requests. **Q:** Which one is more realistic? **A:** Online caching Q: Why do we study the offline caching problem? **A:** Use the offline solution as a benchmark to measure the "competitive ratio" of online algorithms • FIFO(First-In-First-Out): always evict the first page in cache - FIFO(First-In-First-Out): always evict the first page in cache - LRU(Least-Recently-Used): Evict page whose most recent access was earliest - FIFO(First-In-First-Out): always evict the first page in cache - LRU(Least-Recently-Used): Evict page whose most recent access was earliest - LFU(Least-Frequently-Used): Evict page that was least frequently requested - FIFO(First-In-First-Out): always evict the first page in cache - LRU(Least-Recently-Used): Evict page whose most recent access was earliest - LFU(Least-Frequently-Used): Evict page that was least frequently requested - All the above algorithms are not optimum! - Indeed all the algorithms are "online", i.e, the decisions can be made without knowing future requests. Online algorithms can not be optimum. ## **Optimum Offline Caching** #### Furthest-in-Future (FF) - Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one. - The algorithm is **not** an online algorithm, since the decision at a step depends on the request sequence in the future. ## Furthest-in-Future (FF) 3 ## Recall: Designing and Analyzing Greedy Algorithms #### Greedy Algorithm - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) ## Recall: Designing and Analyzing Greedy Algorithms #### Greedy Algorithm - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) #### Offline Caching Problem **Input:** k: the size of cache n: number of pages $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests **Output:** $i_1, i_2, i_3, \cdots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$ - empty stands for an empty page - "hit" means evicting no pages #### Offline Caching Problem ``` Input: k: the size of cache n: number of pages \rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n] \text{: sequence of requests} p_1, p_2, \cdots, p_k \in \{\text{empty}\} \cup [n] \text{: initial set of pages in cache} ``` - **Output:** $i_1, i_2, i_3, \dots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$ - empty stands for an empty page - "hit" means evicting no pages #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1. #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1. 4 ? ? ? 1 2 ? 3 $S: \begin{bmatrix} \frac{1}{2} \\ 3 \end{bmatrix}$ #### Proof. - lacksquare S: any optimum solution - - In the example, $p^* = 3$. - \bullet S: any optimum solution - - In the example, $p^* = 3$. - **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done. - In the example, p'=2. - \bullet S: any optimum solution - p^* : page in cache not requested until furthest in the future. - In the example, $p^* = 3$. - **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done. - In the example, p'=2. | Proof. | | | |--------|--|--| | | | | | | | | | | | | | | | | • Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. • Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - From now on, S' will "copy" S. • If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S' and S' will be exactly the same from now on. - If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S' and S' will be exactly the same from now on. - **3** Assume S did not evict $p^*(=3)$ before we see p'(=2). - If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S' and S' will be exactly the same from now on. - **3** Assume S did not evict $p^*(=3)$ before we see p'(=2). - ① If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise. - $oldsymbol{0}$ So far, S' has 1 less page-miss than S does. - ① If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise. - \odot So far, S' has 1 less page-miss than S does. - $oldsymbol{\Phi}$ The status of S' and that of S only differ by 1 page. $\ensuremath{\mathbf{2}}$ We can then guarantee that S' make at most the same number of page-misses as S does. - $\ensuremath{\mathfrak{Q}}$ We can then guarantee that S' make at most the same number of page-misses as S does. - Idea: if S has a page-hit and S' has a page-miss, we use the opportunity to make the status of S' the same as that of S. \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1. ullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at
time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1. ullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1. **Theorem** The furthest-in-future strategy is optimum. ``` 1: for t \leftarrow 1 to T do 2: if \rho_t is in cache then do nothing 3: else if there is an empty page in cache then 4: evict the empty page and load \rho_t in cache 5: else 6: p^* \leftarrow page in cache that is not used furthest in the future 7: evict p^* and load \rho_t in cache ``` #### A: • The running time can be made to be $O(n + T \log k)$. #### A: - The running time can be made to be $O(n + T \log k)$. - ullet For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. #### A: - The running time can be made to be $O(n + T \log k)$. - For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. - We can find the next time a page is requested easily. #### A: - The running time can be made to be $O(n + T \log k)$. - For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. - We can find the next time a page is requested easily. - Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future. | time | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | |-------|---|----|----|----|----|----|----|----|----|----|----|----|----|--| | pages | | P1 | P5 | P4 | P2 | P5 | Р3 | P2 | P4 | Р3 | P1 | P5 | Р3 | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | | | |-------|-----------------|--|--| | P1 | 10 | | | | | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | | | | P5 | 5 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 5 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 5 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 11 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 11 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | | | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | Р3 | 9 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | ∞ | | P4 | ∞ | ``` 1: for every p \leftarrow 1 to n do ``` 2: $times[p] \leftarrow \text{array of times in which } p \text{ is requested, in } \\ \text{increasing order} \qquad \qquad \rhd \text{ put } \infty \text{ at the end of array}$ 3: $$pointer[p] \leftarrow 1$$ 4: $Q \leftarrow$ empty priority queue 5: **for** every $t \leftarrow 1$ to T **do** 6: $$pointer[\rho_t] \leftarrow pointer[\rho_t] + 1$$ 7: if $\rho_t \in Q$ then 8: $Q.increase-key(\rho_t, times[\rho_t, pointer[\rho_t]])$, **print** "hit", #### continue 9: **if** Q.size() < k **then** 10: **print** "load ρ_t to an empty page" 11: **else** 12: $p \leftarrow Q.\text{extract-max}(), \text{ print "evict } p \text{ and load } \rho_t$ " 13: $Q.\mathsf{insert}(\rho_t, times[\rho_t, pointer[\rho_t]]) ightharpoonup \mathsf{add} \ \rho_t \ \mathsf{to} \ Q \ \mathsf{with} \ \mathsf{key}$ value $times[\rho_t, pointer[\rho_t]]$ ### Outline - 1) Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - Data Compression and Huffman Code - Summary • Let V be a ground set of size n. **Def.** A priority queue is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations: - insert (v, key_value) : insert an element $v \in V \setminus U$, with associated key value key_value . - ullet decrease_key (v, new_key_value) : decrease the key value of an element $v \in U$ to new_key_value - \bullet extract_min(): return and remove the element in U with the smallest key value - · · · # Simple Implementations for Priority Queue ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | | | | | sorted array | | | | | | | | | # Simple Implementations for Priority Queue ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | | | | | | | | | # Simple Implementations for Priority Queue ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | O(n) | O(1) | O(n) | | | | | | ## Simple Implementations for Priority Queue $\bullet \ n = {\rm size} \ {\rm of} \ {\rm ground} \ {\rm set} \ V$ | data structures | insert | extract_min | decrease_key | |-----------------|------------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | O(n) | O(1) | O(n) | | heap | $O(\lg n)$ | $O(\lg n)$ | $O(\lg n)$ | #### Heap The elements in a heap is organized using a complete binary tree: - Nodes are indexed as $\{1, 2, 3, \cdots, s\}$ - Parent of node i: $\lfloor i/2 \rfloor$ - Left child of node i: 2i - Right child of node i: 2i + 1 ## Heap A heap H contains the following fields - s: size of U (number of elements in the heap) - $A[i], 1 \le i \le s$: the element at node i of the tree - ullet $p[v], v \in U$: the index of node containing v - \bullet $key[v], v \in U$: the key value of element v ### Heap The following heap property is satisfied: • for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \leq key[A[j]]$. A heap. Numbers in the circles denote key values of elements. - 1: $s \leftarrow s + 1$ 2: $A[s] \leftarrow v$ - 3: $p[v] \leftarrow s$ - 4: $key[v] \leftarrow key_value$ - 5: $heapify_up(s)$ #### heapify-up(i) - 1: **while** i > 1 **do** - 2: $j \leftarrow \lfloor i/2 \rfloor$ - 3: if key[A[i]] < key[A[j]] then - 4: swap A[i] and A[j] - 5: $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$ - 6: $i \leftarrow j$ - 7: **else** break - 1: $ret \leftarrow A[1]$ - 2: $A[1] \leftarrow A[s]$ - $p[A[1]] \leftarrow 1$ - 4: $s \leftarrow s 1$ - 5: **if** s > 1 **then** - 6: heapify_down(1) - 7: return ret #### $\mathsf{decrease_key}(v, key_val)$ - 1: $key[v] \leftarrow key_value$ - 2: heapify-up(p[v]) #### heapify-down(i) - 1: while $2i \leq s$ do - 2: **if** 2i = s or $key[A[2i]] \le key[A[2i+1]]$ then - $j
\leftarrow 2i$ - 4: **else** - 5: $j \leftarrow 2i + 1$ - 6: if key[A[j]] < key[A[i]] then - 7: swap A[i] and A[j] - 8: $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$ - 9: $i \leftarrow j$ - 10: **else** break ullet Running time of heapify_up and heapify_down: $O(\lg n)$ - Running time of heapify_up and heapify_down: $O(\lg n)$ - Running time of insert, exact_min and decrease_key: $O(\lg n)$ - Running time of heapify_up and heapify_down: $O(\lg n)$ - \bullet Running time of insert, exact_min and decrease_key: $O(\lg n)$ | data structures | insert | extract_min | decrease_key | |-----------------|------------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | O(n) | O(1) | O(n) | | heap | $O(\lg n)$ | $O(\lg n)$ | $O(\lg n)$ | # Two Definitions Needed to Prove that the Procedures Maintain Heap Property **Def.** We say that H is almost a heap except that key[A[i]] is too small if we can increase key[A[i]] to make H a heap. **Def.** We say that H is almost a heap except that key[A[i]] is too big if we can decrease key[A[i]] to make H a heap. #### Outline - 1 Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - Data Compression and Huffman Code - Summary ## **Encoding Letters Using Bits** - ullet 8 letters a,b,c,d,e,f,g,h in a language - need to encode a message using bits - idea: use 3 bits per letter $$deacfg \rightarrow 0111000000101011110$$ Q: Can we have a better encoding scheme? Seems unlikely: must use 3 bits per letter **Q:** What if some letters appear more frequently than the others? **Q:** If some letters appear more frequently than the others, can we have a better encoding scheme? A: Using variable-length encoding scheme might be more efficient. #### Idea • using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used. **Q:** What is the issue with the following encoding scheme? • a: 0 b: 1 c: 00 **Q:** What is the issue with the following encoding scheme? • a: 0 b: 1 c: 00 **A:** Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c. **Q:** What is the issue with the following encoding scheme? • a: 0 b: 1 c: 00 **A:** Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c. #### Solution Use prefix codes to guarantee a unique decoding. #### **Prefix Codes** **Def.** A prefix code for a set S of letters is a function $\gamma: S \to \{0,1\}^*$ such that for two distinct $x,y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$. #### **Prefix Codes** **Def.** A prefix code for a set S of letters is a function $\gamma: S \to \{0,1\}^*$ such that for two distinct $x,y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$. | a | b | c | d | |----------------|------|------|-----| | 001 | 0000 | 0001 | 100 | | \overline{e} | f | g | h | | 11 | 1010 | 1011 | 01 | | a | b | c | d | |----------------|------|------|-----| | 001 | 0000 | 0001 | 100 | | | | | | | \overline{e} | f | g | h | • Reason: there is only one way to cut the first code. | a | b | c | d | |----------------|------|------|-----| | 001 | 0000 | 0001 | 100 | | | | | | | \overline{e} | f | g | h | • 0001001100000001011110100001001 | a | b | c | $\mid d \mid$ | |-----|------|------|---------------| | 001 | 0000 | 0001 | 100 | | | | | | | e | f | g | h | - 0001/001100000001011110100001001 - (| a | b | c | d | |-----|------|------|-----| | 001 | 0000 | 0001 | 100 | | | | | | | e | f | g | h | - 0001/001/100000001011110100001001 - ca | a | b | c | d | |----------------|------|------|-----| | 001 | 0000 | 0001 | 100 | | | | | | | \overline{e} | f | g | h | - 0001/001/100/000001011110100001001 - cad | a | b | c | d | |-----|---------------|------|-----| | 001 | 0000 | 0001 | 100 | | | | | | | e | $\mid f \mid$ | g | h | - 0001/001/100/0000/01011110100001001 - cadb | a | $\mid b \mid$ | c | d | | |----------------|---------------|------|-----|--| | 001 | 0000 | 0001 | 100 | | | | | | | | | \overline{e} | f | g | h | | - 0001/001/100/0000/<mark>01</mark>/011110100001001 - cadbh | a | b | c | d | | |-----|---------------|------|---------------|--| | 001 | 0000 | 0001 | 100 | | | | | ı | | | | e | $\mid f \mid$ | g | $\mid h \mid$ | | - 0001/001/100/0000/01/<mark>01</mark>/1110100001001 - cadbhh | a | b | c | d | |----------------|------------------|---|-----| | 001 | 01 0000 0001 | | 100 | | \overline{e} | f | q | h | | | J | 9 | | - 0001/001/100/0000/01/01/11/10100001001 - cadbhhe | a | b | c | d | | |-----|---------------|------|---------------|--| | 001 | 0000 | 0001 | 100 | | | | | ı | | | | e | $\mid f \mid$ | g | $\mid h \mid$ | | - 0001/001/100/0000/01/01/11/1010/0001001 - cadbhhef | a | b | c | d | | |----------------|------|------|-----|--| | 001 | 0000 | 0001 | 100 | | | | | | | | | \overline{e} | f | g | h | | - 0001/001/100/0000/01/01/11/1010/0001/001 - cadbhhefc | a | b | c | $\mid d \mid$ | |----------------|------|------|---------------| | 001 | 0000 | 0001 | 100 | | \overline{e} | f | g | h | | 11 | 1010 | 1011 | 01 | - 0001/001/100/0000/01/01/11/1010/0001/<mark>001</mark>/ - cadbhhefca Rooted binary tree - Rooted binary tree - Left edges labelled 0 and right edges labelled 1 - Rooted binary tree - Left edges labelled 0 and right edges labelled 1 - A leaf corresponds to a code for some letter - Rooted binary tree - Left edges labelled 0 and right edges labelled 1 - A leaf corresponds to a code for some letter - If coding scheme is not wasteful: a non-leaf has exactly two children - Rooted binary tree - Left edges labelled 0 and right edges labelled 1 - A leaf corresponds to a code for some letter - If coding scheme is not wasteful: a non-leaf has exactly two children #### Best Prefix Codes **Input:** frequencies of letters in a message Output: prefix coding scheme with the shortest encoding for the message ### example | letters | $\mid a \mid$ | b | c | $\mid d$ | $\mid e \mid$ | | |-------------|---------------|---|---|----------|---------------|--| | frequencies | 18 | 3 | 4 | 6 | 10 | scheme 1 scheme 2 ### example | letters | $\mid a \mid$ | $\mid b \mid$ | c | d | $\mid e \mid$ | | |-----------------|---------------|---------------|---|---|---------------|------------| | frequencies | 18 | 3 | 4 | 6 | 10 | | | scheme 1 length | 2 | 3 | 3 | 2 | 2 | total = 89 | | scheme 2 length | 1 | 3 | 3 | 3 | 3 | total = 87 | | scheme 3 length | 1 | 4 | 4 | 3 | 2 | total = 84 | scheme 3 scheme 1 scheme 2 **Q:** What types of decisions should we make? • Can we directly give a code for some letter? - Can we directly give a code for some letter? - Hard to design a strategy; residual problem is complicated. - Can we directly give a code for some letter? - Hard to design a strategy; residual problem is complicated. - Can we partition the letters into left and right sub-trees? - Can we directly give a code for some letter? - Hard to design a strategy; residual problem is complicated. - Can we partition the letters into left and right sub-trees? - Not clear how to design the greedy algorithm **Q:** What types of decisions should we make? - Can we directly give a code for some letter? - Hard to design a strategy; residual problem is complicated. - Can we partition the letters into left and right sub-trees? - Not clear how to design the greedy algorithm **A:** We can choose two letters and make them brothers in the tree. • Focus on the "structure" of the optimum encoding tree - Focus on the "structure" of the optimum encoding tree - There are two deepest leaves that are brothers - Focus on the "structure" of the optimum encoding tree - There are two deepest leaves that are brothers - Focus on the "structure" of the optimum encoding tree - There are two deepest leaves that are brothers **Lemma** It is safe to make the two least frequent letters brothers. So we can irrevocably decide to make the two least frequent letters brothers. • So we can irrevocably decide to make the two least frequent letters brothers. **Q:** Is the residual problem another instance of the best prefix codes problem? • So we can irrevocably decide to make the two least frequent letters brothers. **Q:** Is the residual problem another instance of the best prefix codes problem? **A:** Yes, though it is not immediate to see why. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - ullet d_x the depth of letter x in our output encoding tree. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - ullet d_x the depth of letter x in our output encoding tree. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - ullet d_x the depth of letter x in our output encoding tree. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - ullet d_x the depth of letter x in our output encoding tree. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - ullet d_x the depth of letter x in our output encoding tree. - f_x : the frequency of the letter x in the support. - x_1 and x_2 : the two letters we decided to put together. - d_x the depth of letter x in our output encoding tree. In order to minimize $$\sum_{x \in S} f_x d_x,$$ we need to minimize $$\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x,$$ subject to that d is the depth function for an encoding tree of $S \setminus \{x_1, x_2\}$. • This is exactly the best prefix codes problem, with letters $S \setminus \{x_1, x_2\} \cup \{x'\}$ and frequency vector f! **Def.** The codes given the greedy algorithm is called the Huffman codes. **Def.** The codes given the greedy algorithm is called the Huffman codes. #### $\mathsf{Huffman}(S,f)$
- 1: while |S| > 1 do - 2: let x_1, x_2 be the two letters with the smallest f values - 3: introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$ - 4: let x_1 and x_2 be the two children of x' - 5: $S \leftarrow S \setminus \{x_1, x_2\} \cup \{x'\}$ - 6: return the tree constructed # Algorithm using Priority Queue ``` \mathsf{Huffman}(S,f) 1: Q \leftarrow \text{build-priority-queue}(S) 2: while Q.size > 1 do x_1 \leftarrow Q.\text{extract-min}() 3: x_2 \leftarrow Q.\text{extract-min}() 4: introduce a new letter x' and let f_{x'} = f_{x_1} + f_{x_2} 5: let x_1 and x_2 be the two children of x' 6: Q.insert(x', f_{x'}) 7: 8: return the tree constructed ``` #### Outline - 1) Toy Example: Box Packing - 2 Interval Scheduling - Offline Caching - Heap: Concrete Data Structure for Priority Queue - 4 Data Compression and Huffman Code - Summary - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - Interval scheduling problem: schedule the job j^* with the earliest deadline - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - ullet Interval scheduling problem: schedule the job j^* with the earliest deadline - Offline Caching: evict the page that is used furthest in the future - Build up the solutions in steps - At each step, make an irrevocable decision using a "reasonable" strategy - ullet Interval scheduling problem: schedule the job j^* with the earliest deadline - Offline Caching: evict the page that is used furthest in the future - Huffman codes: make the two least frequent letters brothers - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) #### Analysis of Greedy Algorithm - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) **Def.** A strategy is "safe" if there is always an optimum solution that "agrees with" the decision made according to the strategy. ullet Take an arbitrary optimum solution S - ullet Take an arbitrary optimum solution S - $\bullet\,$ If S agrees with the decision made according to the strategy, done - Take an arbitrary optimum solution S - \bullet If S agrees with the decision made according to the strategy, done - ullet So assume S does not agree with decision - ullet Take an arbitrary optimum solution S - ullet If S agrees with the decision made according to the strategy, done - ullet So assume S does not agree with decision - ullet Change S slightly to another optimum solution S' that agrees with the decision - ullet Take an arbitrary optimum solution S - \bullet If S agrees with the decision made according to the strategy, done - ullet So assume S does not agree with decision - ullet Change S slightly to another optimum solution S' that agrees with the decision - \bullet Interval scheduling problem: exchange j^{\ast} with the first job in an optimal solution - ullet Take an arbitrary optimum solution S - ullet If S agrees with the decision made according to the strategy, done - ullet So assume S does not agree with decision - ullet Change S slightly to another optimum solution S' that agrees with the decision - ullet Interval scheduling problem: exchange j^* with the first job in an optimal solution - Offline caching: a complicated "copying" algorithm - ullet Take an arbitrary optimum solution S - ullet If S agrees with the decision made according to the strategy, done - ullet So assume S does not agree with decision - ullet Change S slightly to another optimum solution S' that agrees with the decision - ullet Interval scheduling problem: exchange j^* with the first job in an optimal solution - Offline caching: a complicated "copying" algorithm - Huffman codes: move the two least frequent letters to the deepest leaves. - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) - ullet Interval scheduling problem: remove j^* and the jobs it conflicts with - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) - ullet Interval scheduling problem: remove j^* and the jobs it conflicts with - Offline caching: trivial - Prove that the reasonable strategy is "safe" (key) - Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) - ullet Interval scheduling problem: remove j^* and the jobs it conflicts with - Offline caching: trivial - Huffman codes: merge two letters into one