
CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

3/74

CSE 431/531: Algorithm Analysis and Design

Course Webpage (contains schedule, policies, and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- homeworks, solutions, announcements, polls, asking/answering
questions

http://www.cse.buffalo.edu/~shil/courses/CSE531/

4/74

CSE 431/531: Algorithm Analysis and Design

Time & Location : 9:00am-9:50am, NSC 201

Instructor:

Shi Li, shil@buffalo.edu

TAs and Graders:

Sean Sanders, Xiaoyu Zhang,
Graders: TBD

5/74

You should already have/know:

Mathematical Background

basic reasoning skills, inductive proofs

Basic data Structures

linked lists, arrays
stacks, queues

Some Programming Experience

Python, C, C++ or Java

6/74

You Will Learn

Classic algorithms for classic problems

Sorting, shortest paths, minimum spanning tree, · · ·
How to analyze algorithms

Correctness
Running time (efficiency)

Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming
· · ·

NP-completeness

7/74

Tentative Schedule

50 Minutes/Lecture × 42 Lectures

Introduction 4 lectures
Graph Basics 3 lectures

Greedy Algorithms 7 lectures
Divide and Conquer 7 lectures

Dynamic Programming 7 lectures
Graph Algorithms 7 lectures
NP-Completeness 5 lectures

Final Review 2 lectures

8/74

Textbook

Textbook (Highly Recommended):

Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

Other Reference Books

Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein

9/74

Reading Before Classes

Highly recommended: read the correspondent sections from the
textbook (or reference book) before classes

Sections for each lecture can be found on the course webpage.

Slides are posted on course webpage. They may get updated
before the classes start.

In last lecture of a major topic (Greedy Algorithms, Divide and
Conquer, Dynamic Programming, Graph Algorithms), I will discuss
exercise problems, which will be posted on the course webpage
before class.

10/74

Grading

40% for theory homeworks

8 points × 5 theory homeworks

20% for programming problems

10 points × 2 programming assignments

40% for final exam

11/74

For Homeworks, You Are Allowed to

Use course materials (textbook, reference books, lecture notes,
etc)

Post questions on Piazza

Ask me or TAs for hints

Collaborate with classmates

Think about each problem for enough time before discussions
Must write down solutions on your own, in your own words
Write down names of students you collaborated with

12/74

For Homeworks, You Are Not Allowed to

Use external resources

Can’t Google or ask questions online for solutions
Can’t read posted solutions from other algorithm course webpages

Copy solutions from other students

13/74

For Programming Problems

Need to implement the algorithms by yourself

Can not copy codes from others or the Internet

We use Moss (https://theory.stanford.edu/~aiken/moss/)
to detect similarity of programs

https://theory.stanford.edu/~aiken/moss/

14/74

Late Policy

You have 1 “late credit”, using it allows you to submit an
assignment solution for three days

With no special reasons, no other late submissions will be accepted

15/74

Final Exam will be closed-book

Academic Integrity (AI) Policy for the Course

minor violation:

0 score for the involved homework/prog. assignment, and
1-letter grade down

2 minor violations = 1 major violation

failure for the course
case will be reported to the department and university
further sanctions may include a dishonesty mark on transcript or
expulsion from university

Questions?

16/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

17/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

18/74

What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the
correct output for any given input.

19/74

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)→ (210, 60)→ (60, 30)→ (30, 0)

20/74

Examples

Sorting

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .

21/74

Examples

Shortest Path
Input: directed graph G = (V,E), s, t ∈ V

Output: a shortest path from s to t in G

16 1

1 5 4
2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm

22/74

Algorithm = Computer Program?

Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

Computer program: “concrete”, implementation of algorithm,
using a particular programming language

23/74

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1: while b > 0 do
2: (a, b)← (b, a mod b)

3: return a

C++ program:

int Euclidean(int a, int b){
int c;

while (b > 0){
c = b;

b = a % b;

a = c;

}
return a;

}

24/74

Theoretical Analysis of Algorithms

Main focus: correctness, running time (efficiency)

Sometimes: memory usage

Not covered in the course: engineering side

extensibility
modularity
object-oriented model
user-friendliness (e.g, GUI)
. . .

Why is it important to study the running time (efficiency) of an
algorithm?

1 feasible vs. infeasible
2 efficient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)
3 fundamental
4 it is fun!

25/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

26/74

Sorting Problem

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

27/74

Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59

28/74

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i + 1]← A[i]
6: i← i− 1

7: A[i + 1]← key

j = 6

key = 15

12 15 21 35 53 59
↑
i

29/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

30/74

Analysis of Insertion Sort

Correctness

Running time

31/74

Correctness of Insertion Sort

Invariant: after iteration j of outer loop, A[1..j] is the sorted array
for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15

after j = 2 : 12, 53, 35, 21, 59, 15

after j = 3 : 12, 35, 53, 21, 59, 15

after j = 4 : 12, 21, 35, 53, 59, 15

after j = 5 : 12, 21, 35, 53, 59, 15

after j = 6 : 12, 15, 21, 35, 53, 59

32/74

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :

Sorting problem: # integers,
Greatest common divisor: total length of two integers
Shortest path in a graph: # edges in graph

Q2: Which input?

For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays
of length n

33/74

Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?

Q4: Programming language?

A: They do not matter!

Important idea: asymptotic analysis
Focus on growth of running-time as a function, not any particular
value.

34/74

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

n2/100− 3n + 10⇒ n2/100⇒ n2

n2/100− 3n + 10 = O(n2)

35/74

Asymptotic Analysis: O-notation

3n3 + 2n2 − 18n + 1028 = O(n3)

n2/100− 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a← b + c:

program 1 requires 10 instructions, or 10−8 seconds
program 2 requires 2 instructions, or 10−9 seconds
they only change by a constant in the running time, which will be
hidden by the O(·) notation

36/74

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

37/74

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > key do
5: A[i + 1]← A[i]
6: i← i− 1

7: A[i + 1]← key

Worst-case running time for iteration j of the outer loop?
Answer: O(j)

Total running time =
∑n

j=2O(j) = O(
∑n

j=2 j)

= O(n(n+1)
2
− 1) = O(n2)

38/74

Computation Model

Random-Access Machine (RAM) model

reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c ≥ 1 large enough

Reason: often we need to read the integer n and handle integers
within range [−nc, nc], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?
Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/74

Remember to sign up for Piazza.

Questions?

40/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

41/74

Asymptotically Positive Functions

Def. f : N→ R is an asymptotically positive function if:

∃n0 > 0 such that ∀n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n2 − n− 30 Yes

2n − n20 Yes

100n− n2/10 + 50? No

We only consider asymptotically positive functions.

42/74

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c > 0
and every large enough n.

nn0

cg(n)

f (n)

f(n) = O(g(n))

43/74

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c > 0
and every large enough n.

3n2 + 2n ∈ O(n2 − 10n)

Proof.
Let c = 4 and n0 = 50, for every n > n0 = 50, we have,

3n2 + 2n− c(n2 − 10n) = 3n2 + 2n− 4(n2 − 10n)

= −n2 + 42n ≤ 0.

3n2 + 2n ≤ c(n2 − 10n)

44/74

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c and
large enough n.

3n2 + 2n ∈ O(n2 − 10n)

3n2 + 2n ∈ O(n3 − 5n2)

n100 ∈ O(2n)

n3 /∈ O(10n2)

Asymptotic Notations O Ω Θ
Comparison Relations ≤

45/74

Conventions

We use “f(n) = O(g(n))” to denote “f(n) ∈ O(g(n))”

3n2 + 2n = O(n3 − 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following equalities are wrong:

O(n3 − 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

46/74

Ω-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

Ω-Notation For a function g(n),

Ω(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ Ω(g(n)) if f(n) ≥ cg(n) for some c and
large enough n.

47/74

Ω-Notation: Asymptotic Lower Bound

Ω-Notation For a function g(n),

Ω(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

nn0

cg(n)

f (n)
f(n) = Ω(g(n))

48/74

Ω-Notation: Asymptotic Lower Bound

Again, we use “=” instead of ∈.

4n2 = Ω(n− 10)
3n2 − n + 10 = Ω(n2 − 20)

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥

Theorem f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)).

49/74

Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{

function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0

}
.

f(n) = Θ(g(n)), then for large enough n, we have “f(n) ≈ g(n)”.

nn0

c1g(n)

f (n)

c2g(n)
f(n) = Θ(g(n))

50/74

Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{

function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0

}
.

3n2 + 2n = Θ(n2 − 20n)

2n/3+100 = Θ(2n/3)

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥ =

Theorem f(n) = Θ(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Ω(g(n)).

51/74

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥ =

Trivial Facts on Comparison Relations
a ≤ b ⇔ b ≥ a

a = b ⇔ a ≤ b and a ≥ b

a ≤ b or a ≥ b

Correct Analogies

f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))

Incorrect Analogy

f(n) = O(g(n)) or f(n) = Ω(g(n))

52/74

Incorrect Analogy

f(n) = O(g(n)) or f(n) = Ω(g(n))

f(n) = n2

g(n) =

{
1 if n is odd

n3 if n is even

53/74

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 − 10n− 5→ 3n2

ignoring leading constant: 3n2 → n2

3n2 − 10n− 5 = O(n2)

Indeed, 3n2 − 10n− 5 = Ω(n2), 3n2 − 10n− 5 = Θ(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 − 10n− 5 = O(5n2 − 6n + 5) is correct, though weird

3n2 − 10n− 5 = O(n2) is the most natural since n2 is the
simplest term we can have inside O(·).

54/74

Notice that O denotes asymptotic upper bound

n2 + 2n = O(n3) is correct.

The following sentence is correct: the running time of the
insertion sort algorithm is O(n4).

We say: the running time of the insertion sort algorithm is O(n2)
and the bound is tight.

We do not use Ω and Θ very often when we upper bound running
times.

55/74

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,Ω or Θ of g.

f g O Ω Θ

n3 − 100n 5n2 + 3n No Yes No

3n− 50 n2 − 7n Yes No No

n2 − 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n Yes Yes Yes

log10 n n0.1 Yes No No

2n 2n/2 No Yes No
√
n nsinn No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

56/74

Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

Questions?

57/74

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

58/74

O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)

1: S ← 0
2: for i← 1 to n
3: S ← S + A[i]
4: return S

59/74

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48

60/74

O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with
length n1 and n2

1: A← []; i← 1; j ← 1
2: while i ≤ n1 and j ≤ n2 do
3: if B[i] ≤ C[j] then
4: append B[i] to A; i← i + 1
5: else
6: append C[j] to A; j ← j + 1

7: if i ≤ n1 then append B[i..n1] to A
8: if j ≤ n2 then append C[j..n2] to A
9: return A

Running time = O(n) where n = n1 + n2.

61/74

O(n log n) Running Time

merge-sort(A, n)

1: if n = 1 then
2: return A
3: B ← merge-sort

(
A
[
1..bn/2c

]
, bn/2c

)
4: C ← merge-sort

(
A
[
bn/2c+ 1..n

]
, n− bn/2c

)
5: return merge(B,C, bn/2c, n− bn/2c)

62/74

O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

63/74

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

64/74

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)

1: bestd←∞
2: for i← 1 to n− 1 do
3: for j ← i + 1 to n do
4: d←

√
(x[i]− x[j])2 + (y[i]− y[j])2

5: if d < bestd then
6: besti← i, bestj ← j, bestd← d

7: return (besti, bestj)

Closest pair can be solved in O(n log n) time!

65/74

O(n3) (Cubic) Running Time

Multiply two matrices of size n× n

matrix-multiplication(A,B, n)

1: C ← matrix of size n× n, with all entries being 0
2: for i← 1 to n do
3: for j ← 1 to n do
4: for k ← 1 to n do
5: C[i, k]← C[i, k] + A[i, j]×B[j, k]

6: return C

66/74

Beyond Polynomial Time: 2n

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))

1: R← ∅
2: for every set S ⊆ V do
3: b← true
4: for every u, v ∈ S do
5: if (u, v) ∈ E then b← false

6: if b and |S| > |R| then R← S

7: return R

Running time = O(2nn2).

67/74

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

68/74

Beyond Polynomial Time: n!

Hamiltonian(G = (V,E))

1: for every permutation (p1, p2, · · · , pn) of V do
2: b← true
3: for i← 1 to n− 1 do
4: if (pi, pi+1) /∈ E then b← false

5: if (pn, p1) /∈ E then b← false
6: if b then return (p1, p2, · · · , pn)

7: return “No Hamiltonian Cycle”

Running time = O(n!× n)

69/74

O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

70/74

O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)
1: i← 1, j ← n
2: while i ≤ j do
3: k ← b(i + j)/2c
4: if A[k] = t return true
5: if t < A[k] then j ← k − 1 else i← k + 1

6: return false

Running time = O(log n)

71/74

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n, n2, n log n, n!, 2n, en, nn

log n = O(n)

n = O(n2)n = O(n log n)

n log n = O(n2)

n2 = O(n!)n2 = O(2n)

2n = O(n!)2n = O(en)

en = O(n!)

n! = O(nn)

72/74

Terminologies

When we talk about upper bound on running time:

Logarithmic time: O(log n)

Linear time: O(n)

Quadratic time O(n2)

Cubic time O(n3)

Polynomial time: O(nk) for some constant k

O(n log n) ⊆ O(n1.1). So, an O(n log n)-time algorithm is also a
polynomial time algorithm.

Exponential time: O(cn) for some c > 1

Sub-linear time: o(n)

Sub-quadratic time: o(n2)

73/74

Goal of Algorithm Design
Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)

74/74

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

	Syllabus
	Introduction
	What is an Algorithm?
	Example: Insertion Sort
	Analysis of Insertion Sort

	Asymptotic Notations
	Common Running times

