CSE 431/531: Algorithm Analysis and Design (Spring 2022) Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

[Syllabus](#page-1-0)

[Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)

[Asymptotic Notations](#page-39-0)

[Common Running times](#page-56-0)

CSE 431/531: Algorithm Analysis and Design

- Course Webpage (contains schedule, policies, and slides): <http://www.cse.buffalo.edu/~shil/courses/CSE531/>
- Please sign up course on Piazza via link on course webpage - homeworks, solutions, announcements, polls, asking/answering questions

CSE 431/531: Algorithm Analysis and Design

- Time & Location : 9:00am-9:50am, NSC 201
- Instructor: \bullet
	- Shi Li, shil@buffalo.edu
- TAs and Graders:
	- Sean Sanders, Xiaoyu Zhang,
	- Graders: TBD

You should already have/know:

- Mathematical Background
	- basic reasoning skills, inductive proofs
- Basic data Structures
	- linked lists, arrays
	- stacks, queues
- Some Programming Experience
	- Python, C, $C++$ or Java
- Classic algorithms for classic problems
	- \bullet Sorting, shortest paths, minimum spanning tree, \cdots
- How to analyze algorithms
	- **Correctness**
	- Running time (efficiency)
- Meta techniques to design algorithms
	- Greedy algorithms
	- Divide and conquer
	- Dynamic programming
	- · · ·
- NP-completeness

 \bullet 50 Minutes/Lecture \times 42 Lectures

Textbook (Highly Recommended):

• Algorithm Design, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

• Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
	- Sections for each lecture can be found on the course webpage.
- Slides are posted on course webpage. They may get updated before the classes start.
- In last lecture of a major topic (Greedy Algorithms, Divide and Conquer, Dynamic Programming, Graph Algorithms), I will discuss exercise problems, which will be posted on the course webpage before class.
- 40% for theory homeworks
	- 8 points \times 5 theory homeworks
- 20% for programming problems
	- 10 points \times 2 programming assignments
- 40% for final exam
- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
	- Think about each problem for enough time before discussions
	- Must write down solutions on your own, in your own words
	- Write down names of students you collaborated with
- **O** Use external resources
	- Can't Google or ask questions online for solutions
	- Can't read posted solutions from other algorithm course webpages
- Copy solutions from other students
- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (<https://theory.stanford.edu/~aiken/moss/>) to detect similarity of programs
- You have 1 "late credit", using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted

• Final Exam will be closed-book

Academic Integrity (AI) Policy for the Course

- **•** minor violation:
	- 0 score for the involved homework/prog. assignment, and
	- 1-letter grade down
- \bullet 2 minor violations $=$ 1 major violation
	- **o** failure for the course
	- case will be reported to the department and university
	- further sanctions may include a dishonesty mark on transcript or expulsion from university

Questions?

[Syllabus](#page-1-0)

² [Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)

[Asymptotic Notations](#page-39-0)

[Common Running times](#page-56-0)

[Syllabus](#page-1-0)

² [Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)
- **[Asymptotic Notations](#page-39-0)**
- **[Common Running times](#page-56-0)**
- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Greatest Common Divisor

```
Input: two integers a, b > 0
```
Output: the greatest common divisor of a and b

Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- \bullet gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

Sorting

- **Input:** sequence of *n* numbers (a_1, a_2, \dots, a_n)
- **Output:** a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- Input: $53, 12, 35, 21, 59, 15$
- Output: $12, 15, 21, 35, 53, 59$
- Algorithms: insertion sort, merge sort, quicksort, . . .

Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$ **Output:** a shortest path from s to t in G

Algorithm: Dijkstra's algorithm

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code:

Euclidean (a, b)

1: while $b > 0$ do 2: $(a, b) \leftarrow (b, a \mod b)$

3: return a

 $C++$ program:

- \bullet int Euclidean(int a, int b){
- int c; \bullet

• while
$$
(b > 0)
$$

$$
\mathsf{c}=\mathsf{b};
$$

$$
b = a \mathrel{\%} b;
$$

$$
a=c;
$$

return a;

}

 \bullet }

۰ \bullet \bullet ۰ ۰

Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
	- extensibility
	- modularity
	- object-oriented model
	- user-friendliness (e.g, GUI)
	- \bullet . . .
- Why is it important to study the running time (efficiency) of an algorithm?
- **4** feasible vs. infeasible
- ² efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
- **3** fundamental
- it is fun!

[Syllabus](#page-1-0)

² [Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)
- **[Asymptotic Notations](#page-39-0)**
- **[Common Running times](#page-56-0)**

Sorting Problem

Input: sequence of *n* numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- Input: $53, 12, 35, 21, 59, 15$
- Output: $12, 15, 21, 35, 53, 59$

 \bullet At the end of *j*-th iteration, the first *j* numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15 iteration 2: 12, 53, 35, 21, 59, 15 iteration 3: 12, 35, 53, 21, 59, 15 iteration 4: 12, 21, 35, 53, 59, 15 iteration 5: 12, 21, 35, 53, 59, 15 iteration 6: 12, 15, 21, 35, 53, 59

Example:

- Input: $53, 12, 35, 21, 59, 15$
- Output: $12, 15, 21, 35, 53, 59$

 \bullet j = 6 • $key = 15$ 12 15 21 35 53 59 ↑ i

[Syllabus](#page-1-0)

² [Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)
- **[Asymptotic Notations](#page-39-0)**
- **[Common Running times](#page-56-0)**
- Correctness
- **•** Running time

• Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

> after $j = 1 : 53, 12, 35, 21, 59, 15$ after $j = 2 : 12, 53, 35, 21, 59, 15$ after $j = 3 : 12, 35, 53, 21, 59, 15$ after $j = 4 : 12, 21, 35, 53, 59, 15$ after $j = 5 : 12, 21, 35, 53, 59, 15$ after $j = 6 : 12, 15, 21, 35, 53, 59$

Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
	- Sorting problem: $#$ integers,
	- Greatest common divisor: total length of two integers
	- Shortest path in a graph: $\#$ edges in graph
- Q2: Which input?
	- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
	- Running time for size $n =$ worst running time over all possible arrays of length n

Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any particular value.

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 3n + 10 = O(n^2)$

Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

 O -notation allows us to ignore

- architecture of computer
- **•** programming language
- \bullet how we measure the running time: seconds or $\#$ instructions?
- to execute $a \leftarrow b + c$:
	- program 1 requires 10 instructions, or 10^{-8} seconds
	- program 2 requires 2 instructions, or 10^{-9} seconds
	- they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n!$ \bullet
- Algorithm 2 will eventually beat algorithm 1 as n increases.
- For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

insertion-sort (A, n) 1: for $j \leftarrow 2$ to n do 2: $key \leftarrow A[i]$ 3: $i \leftarrow i - 1$ 4: while $i > 0$ and $A[i] > key$ do 5: $A[i+1] \leftarrow A[i]$ 6: $i \leftarrow i - 1$ 7: $A[i+1] \leftarrow \text{key}$

- Worst-case running time for iteration i of the outer loop? Answer: $O(i)$
- Total running time $= \sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ $= O(\frac{n(n+1)}{2} - 1) = O(n^2)$

Computation Model

- Random-Access Machine (RAM) model
	- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
	- Reason: often we need to read the integer n and handle integers within range $\left[-n^{c},n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

• Remember to sign up for Piazza.

Questions?

Outline

[Syllabus](#page-1-0)

[Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)

³ [Asymptotic Notations](#page-39-0)

Asymptotically Positive Functions

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:
- $\bullet \ \exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$
- In other words, $f(n)$ is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No
- We only consider asymptotically positive functions.

O-Notation: Asymptotic Upper Bound

O-Notation For a function
$$
g(n)
$$
,

\n
$$
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
$$

• In other words, $f(n) \in O(q(n))$ if $f(n) \leq c q(n)$ for some $c > 0$ and every large enough n .

42/74

O-Notation: Asymptotic Upper Bound

O-Notation For a function
$$
g(n)
$$
,

\n
$$
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
$$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some $c > 0$ and every large enough n .

•
$$
3n^2 + 2n \in O(n^2 - 10n)
$$

Proof.

Let
$$
c = 4
$$
 and $n_0 = 50$, for every $n > n_0 = 50$, we have,
\n
$$
3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)
$$
\n
$$
= -n^2 + 42n \le 0.
$$
\n
$$
3n^2 + 2n \le c(n^2 - 10n)
$$

 \rightarrow

O-**Notation** For a function $q(n)$, $O(g(n)) = \big\{ \mathrm{function}\,\, f: \exists c > 0, n_0 > 0$ such that $f(n) \le cg(n), \forall n \ge n_0$.

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n .
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

Asymptotic Notations $\vert O \vert \Omega \vert \Theta$ Comparison Relations $|\leq|$

Conventions

- We use " $f(n) = O(q(n))$ " to denote " $f(n) \in O(q(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following equalities are wrong:
- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

Ω-Notation: Asymptotic Lower Bound

O-**Notation** For a function $g(n)$, $O(g(n)) = \big\{ \mathrm{function}\,\, f: \exists c > 0, n_0 > 0$ such that $f(n) \le cg(n), \forall n \ge n_0$.

 Ω -**Notation** For a function $q(n)$, $\Omega(g(n)) = \big\{ \mathrm{function}\; f: \exists c>0, n_0>0 \; \textsf{such that}$ $f(n) \ge cg(n), \forall n \ge n_0$.

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n .

Ω-Notation: Asymptotic Lower Bound

 Ω -**Notation** For a function $g(n)$, $\Omega(g(n)) = \big\{ \mathrm{function}\; f: \exists c>0, n_0>0 \; \textsf{such that}$ $f(n) \ge cg(n), \forall n \ge n_0$.

Ω-Notation: Asymptotic Lower Bound

• Again, we use "=" instead of
$$
\in
$$
.

•
$$
4n^2 = \Omega(n-10)
$$

• $3n^2 - n + 10 = \Omega(n^2 - 20)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$

Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n), $\Theta(g(n)) = \big\{ \mathrm{function}\; f: \exists c_2 \geq c_1 > 0, n_0 > 0 \; \textsf{such that} \;$ $c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0$.

 \bullet $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n), $\Theta(g(n)) = \big\{ \mathrm{function}\; f: \exists c_2 \geq c_1 > 0, n_0 > 0 \; \textsf{such that} \;$ $c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0$.

•
$$
3n^2 + 2n = \Theta(n^2 - 20n)
$$

on $(3 \times 100) = \Theta(n^2)^2$

•
$$
2^{n/3+100} = \Theta(2^{n/3})
$$

Theorem
$$
f(n) = \Theta(g(n))
$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Asymptotic Notations $\mid O \mid \Omega \mid \Theta$ Comparison Relations $| \leq | \geq | =$

Trivial Facts on Comparison Relations

- $a \leq b \Leftrightarrow b \geq a$
- \bullet $a = b \Leftrightarrow a < b$ and $a > b$
- \bullet a $\lt b$ or $a \gt b$

Correct Analogies

- \bullet $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(q(n)) \Leftrightarrow f(n) = O(q(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$
f(n) = O(g(n))
$$
 or $f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$
f(n) = O(g(n))
$$
 or $f(n) = \Omega(g(n))$

$$
f(n) = n2
$$

$$
g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n3 & \text{if } n \text{ is even} \end{cases}
$$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2\rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2-10n-5=O(5n^2-6n+5)$ is correct, though weird
- $3n^2-10n-5=O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(·)$.
- $n^2+2n=O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of q.

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

Asymptotic Notations $\mid O \mid \Omega \mid \Theta \mid o \mid \omega$ <code>Comparison Relations</code> $| \leq | \geq | = | < | >$

Questions?

Outline

[Syllabus](#page-1-0)

[Introduction](#page-15-0)

- [What is an Algorithm?](#page-16-0)
- [Example: Insertion Sort](#page-24-0)
- [Analysis of Insertion Sort](#page-28-0)

[Asymptotic Notations](#page-39-0)

$O(n)$ (Linear) Running Time

Computing the sum of n numbers

 $sum(A, n)$

- 1: $S \leftarrow 0$
- 2: for $i \leftarrow 1$ to n
- 3: $S \leftarrow S + A[i]$
- 4: return S

$O(n)$ (Linear) Running Time

• Merge two sorted arrays

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n3 & 8 & 12 & 20 & 32 & 48 \\
\hline\n5 & 7 & 9 & 25 & 29\n\end{array}
$$

Running time = $O(n)$ where $n = n_1 + n_2$.

merge-sort (A, n)

- 1: if $n=1$ then
- 2: return A
- 3: $B \leftarrow$ merge-sort $\Big(A[1..\lfloor n/2 \rfloor],\lfloor n/2 \rfloor\Big)$
- 4: $C \leftarrow$ merge-sort $\Bigl(A\bigl[\lfloor n/2 \rfloor + 1..n \bigr], n \lfloor n/2 \rfloor \Bigr)$
- 5: **return** merge $(B, C, |n/2|, n |n/2|)$

$O(n \log n)$ Running Time

• Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $= O(n \log n)$

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ **Output:** the pair of points that are closest

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ **Output:** the pair of points that are closest

closest-pair (x, y, n)

1:
$$
bestd \leftarrow \infty
$$
\n2: **for** $i \leftarrow 1$ to $n-1$ **do**\n3: **for** $j \leftarrow i+1$ to n **do**\n4: $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ \n5: **if** $d < bestd$ **then**\n6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$ \n7: **return** $(besti, bestj)$

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

- 1: C ← matrix of size $n \times n$, with all entries being 0
- 2: for $i \leftarrow 1$ to n do
- 3: for $i \leftarrow 1$ to n do
- 4: for $k \leftarrow 1$ to n do
- 5: $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$

6: return C

Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph
$$
G = (V, E)
$$

Output: the maximum independent set of G

max-independent-set $(G = (V, E))$

- 1: $R \leftarrow \emptyset$
- 2: for every set $S \subseteq V$ do
- 3: $b \leftarrow \text{true}$
- 4: **for** every $u, v \in S$ do
- 5: if $(u, v) \in E$ then $b \leftarrow$ false
- 6: if b and $|S| > |R|$ then $R \leftarrow S$

7: return R

Running time = $O(2^n n^2)$.

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

$Hamiltonian(G = (V, E))$

- 1: **for** every permutation (p_1, p_2, \cdots, p_n) of V **do**
- 2: $b \leftarrow \text{true}$
- 3: **for** $i \leftarrow 1$ to $n-1$ **do**
- 4: if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow$ false
- 5: if $(p_n, p_1) \notin E$ then $b \leftarrow$ false
- 6: if b then return (p_1, p_2, \cdots, p_n)
- 7: return "No Hamiltonian Cycle"

Running time $= O(n! \times n)$

$O(\log n)$ (Logarithmic) Running Time

- **•** Binary search
	- Input: sorted array A of size n , an integer t ;
	- Output: whether t appears in A .
- E.g. search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A .

Running time $= O(\log n)$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n^2)n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)n^2 = O(2^n)$
- $2^n = O(n!)2^n = O(e^n)$
- $e^n = O(n!)$
- $n! = O(n^n)$

Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
	- $O(n\log n)\subseteq O(n^{1.1})$. So, an $O(n\log n)$ -time algorithm is also a polynomial time algorithm.
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A :

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n , algorithm with lower order running time beats algorithm with higher order running time.