Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1: \textbf{if} \ n = 1 \ \textbf{then}
2: \hspace{1em} \textbf{return} \ A
3: \textbf{else}
4: \hspace{1em} B \leftarrow \text{merge-sort} \left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor \right)
5: \hspace{1em} C \leftarrow \text{merge-sort} \left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil \right)
6: \textbf{return} \ \text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)

▶ Divide: trivial
▶ Conquer: 4, 5
▶ Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

```
10  8  15  9  12
8   9  10  12  15
```

- 4 inversions (for convenience, using numbers, not indices):
 - $(10, 8)$
 - $(10, 9)$
 - $(15, 9)$
 - $(15, 12)$
Naive Algorithm for Counting Inversions

count-inversions\((A, n)\)

1: \(c \leftarrow 0\)
2: \(\textbf{for } \text{every } i \leftarrow 1 \text{ to } n - 1 \text{ do}\)
3: \(\quad \textbf{for } \text{every } j \leftarrow i + 1 \text{ to } n \text{ do}\)
4: \(\quad \quad \textbf{if } A[i] > A[j] \text{ then } c \leftarrow c + 1\)
5: \(\textbf{return } c\)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = |\{(i, j) : B[i] > C[j]\}| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \quad \text{total} = 18$$

$$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$$

\[+0 \quad +2 \quad +3 \quad +3 \quad +5 \quad +5\]

\[
\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}
\]
Count Inversions between B and C

Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$
2: $A \leftarrow []$; $i \leftarrow 1$; $j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: append $B[i]$ to A; $i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: else
8: append $C[j]$ to A; $j \leftarrow j + 1$
9: return $(A, count)$
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count($A, n$)

1: if $n = 1$ then
2: return ($A, 0$)
3: else
4: ($B, m_1$) ← sort-and-count($A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil$)
5: ($C, m_2$) ← sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: ($A, m_3$) ← merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return ($A, m_1 + m_2 + m_3$)
```

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Outline

Divide-and-Conquer

Counting Inversions

QuickSort and Selection
 QuickSort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Outline

- Divide-and-Conquer
- Counting Inversions

Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

- Polynomial Multiplication

- Other Classic Algorithms using Divide-and-Conquer

- Solving Recurrences

- Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trivial</td>
</tr>
<tr>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Quicksort

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \quad \text{Divide}
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \quad \text{Divide}
5. \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) \quad \text{Conquer}
6. \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) \quad \text{Conquer}
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

\textbf{quicksort}(A, n)

1: if \(n \leq 1 \) then return \(A \)
2: \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \quad \| \quad \text{Divide}
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \quad \| \quad \text{Divide}
5: \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \quad \| \quad \text{Conquer}
6: \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \quad \| \quad \text{Conquer}
7: \(t \leftarrow \) number of times \(x \) appear in \(A \)
8: return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Randomized Algorithm Model

<table>
<thead>
<tr>
<th>Assumption</th>
<th>There is a procedure to produce a random real number in $[0, 1]$.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q:</th>
<th>Can computers really produce random numbers?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A:</th>
<th>No! The execution of a computer programs is deterministic!</th>
</tr>
</thead>
</table>

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random.
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if \(n \leq 1 \) then return \(A \)
2: \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \| Divide
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \| Divide
5: \(B_L \leftarrow \) quicksort\((A_L, A_L.size)\) \hspace{1cm} \| Conquer
6: \(B_R \leftarrow \) quicksort\((A_R, A_R.size)\) \hspace{1cm} \| Conquer
7: \(t \leftarrow \) number of times \(x \) appear \(A \)
8: return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

Lemma The expected running time of the algorithm is \(O(n \lg n) \).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort\((A, \ell, r)\)

1: \textbf{if } \ell \geq r \textbf{ then return}
2: \hspace{1em} m \leftarrow \text{partition}(A, \ell, r)
3: \hspace{0.5em} \text{quicksort}(A, \ell, m - 1)
4: \hspace{0.5em} \text{quicksort}(A, m + 1, r)

- To sort an array \(A\) of size \(n\), call \text{quicksort}(A, 1, n).

\textbf{Note:} We pass the array \(A\) by reference, instead of by copying.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29 32 48
Outline

Divide-and-Conquer

Counting Inversions

Quick sort and Selection
 Quick sort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

```
1 2 3 4
x = 1?
x ≤ 2?
x = 3?
```
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x ▶ Divide
4: $A_R \leftarrow$ elements in A that are greater than x ▶ Divide
5: $B_L \leftarrow$ quicksort\((A_L, A_L...size)\) ▶ Conquer
6: $B_R \leftarrow$ quicksort\((A_R, A_R...size)\) ▶ Conquer
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

selection(*A*, *n*, *i*)

1: if *n* = 1 then return *A*
2: *x* ← lower median of *A*
3: *A_L* ← elements in *A* that are less than *x* ▷ Divide
4: *A_R* ← elements in *A* that are greater than *x* ▷ Divide
5: if *i* ≤ *A_L*.size then
7: else if *i* > *n* − *A_R*.size then
8: return selection(*A_R*, *A_R*.size, *i* − (*n* − *A_R*.size)) ▷ Conquer
9: else
10: return *x*

▷ Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
▷ Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1: \textbf{if} \(n = 1 \) \textbf{then} return \(A \)

2: \(x \leftarrow \text{random element of } A \) (called pivot)

3: \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \quad \triangleright \text{ Divide} \)

4: \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \quad \triangleright \text{ Divide} \)

5: \textbf{if} \(i \leq A_L.\text{size} \) \textbf{then}

6: \quad \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \text{ Conquer}

7: \quad \textbf{else if} \(i > n - A_R.\text{size} \) \textbf{then}

8: \quad \quad \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \text{ Conquer}

9: \quad \textbf{else}

10: \quad \textbf{return} \ x

\[\triangleright \text{ expected running time } = O(n) \]
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection

Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

Input: $(4, -5, 2, 3), (-5, 6, -3, 2)$

Output: $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

\[
\text{polynomial-multiplication}(A, B, n)
\]

1: let \(C[k] \leftarrow 0 \) for every \(k = 0, 1, 2, \cdots, 2n - 2 \)
2: for \(i \leftarrow 0 \) to \(n - 1 \) do
3: \hspace{1em} for \(j \leftarrow 0 \) to \(n - 1 \) do
4: \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j] \)
5: return \(C \)

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

▶ \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
▶ \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
▶ \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) = p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\Rightarrow p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L
\]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1: if $n = 1$ then return $(A[0]B[0])$
2: $A_L \leftarrow A[0 \ldots n/2 - 1]$, $A_H \leftarrow A[n/2 \ldots n - 1]$
3: $B_L \leftarrow B[0 \ldots n/2 - 1]$, $B_H \leftarrow B[n/2 \ldots n - 1]$
4: $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5: $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6: $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
8: **for** $i \leftarrow 0 \text{ to } n - 2 \text{ do}$
9: \quad $C[i] \leftarrow C[i] + C_L[i]$
10: \quad $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: \quad $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12: **return** C
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \log n)$ time
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

▶ Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: $\text{matrix-multiplication}(A, B, n)$

1: $\text{for } i \leftarrow 1 \text{ to } n \text{ do}$
2: $\text{for } j \leftarrow 1 \text{ to } n \text{ do}$
3: $C[i, j] \leftarrow 0$
4: $\text{for } k \leftarrow 1 \text{ to } n \text{ do}$
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: $\text{return } C$

- running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad n/2 \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \]

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)

Index of last level? \(\lg_2 n \)

Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\log_2 n \)

- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **\(c < \log_b a \):** bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \)
- **\(c = \log_b a \):** all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- **\(c > \log_b a \):** top-level dominates: \(O(n^c) \)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\ldots

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

Recurrence for running time?

$T(n) = T(n/2) + O(1)$

$T(n) = O(\log n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time