CSE 431/531: Algorithm Analysis and Design (Fall 2021)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1: \textbf{if } \(n = 1\) \textbf{then}
2: \hspace{1em} \textbf{return } A
3: \textbf{else}
4: \hspace{1em} B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lceil n/2 \rceil\right)
5: \hspace{1em} C \leftarrow \text{merge-sort}\left(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor\right)
6: \hspace{1em} \textbf{return } \text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $= O(n \log n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10  8  15  9  12
8   9  10  12  15
```

- 4 inversions (for convenience, using numbers, not indices): (10, 8), (10, 9), (15, 9), (15, 12)
Naive Algorithm for Counting Inversions

count-inversions\((A, n)\)

1: \(c \leftarrow 0 \)
2: for every \(i \leftarrow 1 \) to \(n - 1 \) do
3: for every \(j \leftarrow i + 1 \) to \(n \) do
4: if \(A[i] > A[j] \) then \(c \leftarrow c + 1 \)
5: return \(c \)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[
p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n]
\]

\[
\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m
\]

\[
m = |\{(i, j) : B[i] > C[j]\}|
\]

Lemma If both \(B\) and \(C\) are sorted, then we can compute \(m\) in \(O(n)\) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}
\]

total = 18
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$
2: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: append $B[i]$ to $A; i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: else
8: append $C[j]$ to $A; j \leftarrow j + 1$
9: return $(A, count)$
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

$$\text{sort-and-count}(A, n)$$

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Merge 2 sorted arrays</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Recurse</td>
<td></td>
<td>Recurse</td>
</tr>
<tr>
<td>Combine</td>
<td>Trivial</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

\[
\begin{array}{cccccccccccc}
29 & 82 & 75 & 64 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
29 & 38 & 45 & 25 & 15 & 37 & 17 & 64 & 82 & 75 & 94 & 92 & 69 & 76 & 85 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
25 & 15 & 17 & 29 & 38 & 45 & 37 & 64 & 82 & 75 & 94 & 92 & 69 & 76 & 85 \\
\end{array}
\]
quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \|\| \text{Divide}
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \|\| \text{Divide}
5: \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) \hspace{1cm} \|\| \text{Conquer}
6: \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) \hspace{1cm} \|\| \text{Conquer}
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Assumption We can choose median of an array of size \(n \) in \(O(n) \) time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in \(O(n) \) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\)
 \[\text{Divide}\]
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\)
 \[\text{Divide}\]
5: \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\)
 \[\text{Conquer}\]
6: \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\)
 \[\text{Conquer}\]
7: \(t \leftarrow\) number of times \(x\) appear in \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ elements in A that are less than x
4: $A_R \leftarrow$ elements in A that are greater than x
5: $B_L \leftarrow$ quicksort(A_L, A_L\cdot size)
6: $B_R \leftarrow$ quicksort(A_R, A_R\cdot size)
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: **while** true **do**
4: **while** $i < j$ and $A[i] < A[j]$ **do** $j \leftarrow j - 1$
5: **if** $i = j$ **then** break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: **while** $i < j$ and $A[i] < A[j]$ **do** $i \leftarrow i + 1$
8: **if** $i = j$ **then** break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m ← patition(A, ℓ, r)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{align*}
3 & \quad 8 & \quad 12 & \quad 20 & \quad 32 & \quad 48 \\
5 & \quad 7 & \quad 9 & \quad 25 & \quad 29 \\
3 & \quad 5 & \quad 7 & \quad 8 & \quad 9 & \quad 12 & \quad 20 & \quad 25 & \quad 29 & \quad 32 & \quad 48
\end{align*}
\]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

```
1 2 3 4
```

```
x = 1?
x = 3?
x ≤ 2?
```
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Can we do better than $O(n \log n)$ for sorting?

No, for comparison-based sorting algorithms.

Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.

You can ask Bob questions of the form "does i appear before j in π?"

How many questions do you need to ask in order to get the permutation π?

At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(A, n)

1. **if** $n \leq 1$ **then** return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x ▶ Divide
4. $A_R \leftarrow$ elements in A that are greater than x ▶ Divide
5. $B_L \leftarrow$ quicksort(A_L, A_L.size) ▶ Conquer
6. $B_R \leftarrow$ quicksort(A_R, A_R.size) ▶ Conquer
7. $t \leftarrow$ number of times x appear A
8. **return** the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

选值算法（Selection Algorithm）

1: `if n = 1 then return A`
2: `x ← lower median of A`
3: `A_L ← elements in A that are less than x` ▶ Divide
4: `A_R ← elements in A that are greater than x` ▶ Divide
5: `if i ≤ A_L.size then`
6: `return selection(A_L, A_L.size, i)` ▶ Conquer
7: `else if i > n − A_R.size then`
8: `return selection(A_R, A_R.size, i − (n − A_R.size))` ▶ Conquer
9: `else`
10: `return x`

• Recurrence for selection: $T(n) = T(n/2) + O(n)$
• Solving recurrence: $T(n) = O(n)$
Randomized Selection Algorithm

\textbf{selection}(A, n, i)

1: \textbf{if} $n = 1$ \textbf{then} \textbf{return} A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} \triangleright \text{Divide}
4: $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} \triangleright \text{Divide}
5: \textbf{if} $i \leq A_L$.size \textbf{then}
6: \hspace{1cm} \textbf{return} selection(A_L, A_L.size, i) \hspace{1cm} \triangleright \text{Conquer}
7: \textbf{else if} $i > n - A_R$.size \textbf{then}
8: \hspace{1cm} \textbf{return} selection(A_R, A_R.size, $i - (n - A_R$.size)) \hspace{1cm} \triangleright \text{Conquer}
9: \textbf{else}
10: \hspace{1cm} \textbf{return} x

\textbullet \textbf{expected running time} $= O(n)$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

 polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: for $j \leftarrow 0$ to $n - 1$ do
4: $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \\
= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
\]
\[
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n
\]
\[
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2}
\]
\[
+ multiply(p_L, q_L)
\]

• Recurrence: \(T(n) = 4T(n/2) + O(n) \)
• \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[
pq = (p_{H}x^{n/2} + p_{L})(q_{H}x^{n/2} + q_{L})
= p_{H}q_{H}x^{n} + (p_{H}q_{L} + p_{L}q_{H})x^{n/2} + p_{L}q_{L}
\]

\[
p_{H}q_{L} + p_{L}q_{H} = (p_{H} + p_{L})(q_{H} + q_{L}) - p_{H}q_{H} - p_{L}q_{L}
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^\log_2 3) = O(n^{1.585}) \)
Assumption
n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1. if $n = 1$ then return $(A[0]B[0])$
2. $A_L \leftarrow A[0..n/2-1], A_H \leftarrow A[n/2..n-1]$
3. $B_L \leftarrow B[0..n/2-1], B_H \leftarrow B[n/2..n-1]$
4. $C_L \leftarrow$ multiply($A_L, B_L, n/2$)
5. $C_H \leftarrow$ multiply($A_H, B_H, n/2$)
6. $C_M \leftarrow$ multiply($A_L + A_H, B_L + B_H, n/2$)
7. $C \leftarrow$ array of $(2n - 1)$ 0's
8. for $i \leftarrow 0$ to $n - 2$ do
9.
 $C[i] \leftarrow C[i] + C_L[i]$
10. $C[i + n] \leftarrow C[i + n] + C_H[i]$
11. $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12. return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \log n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. **for** $i \leftarrow 1$ to n **do**
2. **for** $j \leftarrow 1$ to n **do**
3. \hspace{1.5em} $C[i, j] \leftarrow 0$
4. **for** $k \leftarrow 1$ to n **do**
5. \hspace{1.5em} $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. **return** C

running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- matrix_multiplication(A, B) recursively calls matrix_multiplication(A_{11}, B_{11}), matrix_multiplication(A_{12}, B_{21}), ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
- Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion tree diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\log_2 n \)
- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i n = O\left(n \left(\frac{3}{2}\right)^{\log_2 n}\right) = O(3^{\log_2 n}) = O(n^{\log_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[
T(n) = aT(n/b) + O(n^c)
\]

\[
\begin{align*}
1 \text{ node} & : n^c \\
 a\text{ nodes} & : (n/b)^c \\
 a^2\text{ nodes} & : (n/b^2)^c \\
 a^3\text{ nodes} & : (n/b^3)^c
\end{align*}
\]

- \(c < \lg_b a\) : bottom-level dominates: \((a/b^c)^{\lg_b n} n^c = n^{\lg_b a}\)
- \(c = \lg_b a\) : all levels have same time: \(n^c \lg_b n = O(n^c \lg n)\)
- \(c > \lg_b a\) : top-level dominates: \(O(n^c)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

n-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}
\]

\[
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}
\]
power(n)

1: if \(n = 0 \) then return \(
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\)

2: \(R \leftarrow \text{power}([n/2]) \)

3: \(R \leftarrow R \times R \)

4: if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

5: return \(R \)

Fib(n)

1: if \(n = 0 \) then return 0

2: \(M \leftarrow \text{power}(n - 1) \)

3: return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
- \(T(n) = O(\lg n) \)
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time