CSE 431/531: Algorithm Analysis and Design (Fall 2022)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6: return $\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):

$(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: \(c \leftarrow 0 \)
2: \textbf{for} every \(i \leftarrow 1 \) to \(n - 1 \) \textbf{do}
3: \hspace{1em} \textbf{for} every \(j \leftarrow i + 1 \) to \(n \) \textbf{do}
4: \hspace{2em} \textbf{if} \(A[i] > A[j] \) \textbf{then} \(c \leftarrow c + 1 \)
5: \textbf{return} \(c \)
Divide-and-Conquer

\[A: \]

\[B \quad C \]

\[p \]

- \(p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p + 1..n] \)
- \#invs(A) = \#invs(B) + \#invs(C) + m
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \ B = A[1..p], \ C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

B:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

C:

$\text{total} = 18$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>29</td>
<td>32</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

$+$0 $+$2 $+$3 $+$3 $+$5 $+$5
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n₁, n₂)
1:    count ← 0;
2:    A ← array of size n₁ + n₂; i ← 1; j ← 1
3:    while i ≤ n₁ or j ≤ n₂ do
4:        if j > n₂ or (i ≤ n₁ and B[i] ≤ C[j]) then
5:            A[i + j − 1] ← B[i]; i ← i + 1
6:                count ← count + (j − 1)
7:        else
8:            A[i + j − 1] ← C[j]; j ← j + 1
9:    return (A, count)
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

\begin{align*}
\text{sort-and-count}(A, n) & \quad \text{Divide: trivial} \\
1: \quad \text{if } n = 1 \text{ then} & \quad \text{Conquer: 4, 5} \\
2: \quad \text{return } (A, 0) & \quad \text{Combine: 6, 7} \\
3: \quad \text{else} & \\
4: \quad (B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor) & \\
5: \quad (C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil) & \\
6: \quad (A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil) & \\
7: \quad \text{return } (A, m_1 + m_2 + m_3) &
\end{align*}
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor] , \lceil n/2 \rceil)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n] , \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing \(n \)-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```

```
29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
```

```
25  15  17  29  38  45  37  64  82  75  94  92  69  76  85
```
Quicksort

`quicksort(A, n)`

1. if `n ≤ 1` then return `A`
2. `x ←` lower median of `A`
3. `A_L ←` array of elements in `A` that are less than `x` \ \ Divide
4. `A_R ←` array of elements in `A` that are greater than `x` \ \ Divide
5. `B_L ←` quicksort(`A_L`, length of `A_L`) \ \ Conquer
6. `B_R ←` quicksort(`A_R`, length of `A_R`) \ \ Conquer
7. `t ←` number of times `x` appear `A`
8. return concatenation of `B_L`, `t` copies of `x`, and `B_R`

- Recurrence `T(n) ≤ 2T(n/2) + O(n)`
- Running time = `O(n lg n)`
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a pivot randomly and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ a random element of A (x is called a pivot)
3. $A_L \leftarrow$ array of elements in A that are less than x \hspace{1cm} \text{Divide}
4. $A_R \leftarrow$ array of elements in A that are greater than x \hspace{1cm} \text{Divide}
5. $B_L \leftarrow$ quicksort(A_L, length of A_L) \hspace{1cm} \text{Conquer}
6. $B_R \leftarrow$ quicksort(A_R, length of A_R) \hspace{1cm} \text{Conquer}
7. $t \leftarrow$ number of times x appear A
8. return concatenation of B_L, t copies of x, and B_R
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
QuickSort Using A Random Pivot

quickSort(A, n)

1: if n ≤ 1 then return A
2: x ← a random element of A (x is called a pivot)
3: A_L ← array of elements in A that are less than x
4: A_R ← array of elements in A that are greater than x
5: B_L ← quickSort(A_L, length of A_L)
6: B_R ← quickSort(A_R, length of A_R)
7: t ← number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \log n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition\((A, \ell, r) \)

1: \(p \leftarrow \) random integer between \(\ell \) and \(r \), swap \(A[p] \) and \(A[\ell] \)
2: \(i \leftarrow \ell, j \leftarrow r \)
3: while true do
4: \quad while \(i < j \) and \(A[i] < A[j] \) do \(j \leftarrow j - 1 \)
5: \quad if \(i = j \) then break
6: \quad swap \(A[i] \) and \(A[j] \); \(i \leftarrow i + 1 \)
7: \quad while \(i < j \) and \(A[i] < A[j] \) do \(i \leftarrow i + 1 \)
8: \quad if \(i = j \) then break
9: \quad swap \(A[i] \) and \(A[j] \); \(j \leftarrow j - 1 \)
10: return \(i \)
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)
1: if ℓ ≥ r then return
2: m ← partition(A, ℓ, r)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)

• To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing \(n \)-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Decision tree diagram](image-url)
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

\textbf{quicksort}(A, n)

1: \textbf{if} $n \leq 1$ \textbf{then return} A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x \triangleright Divide
4: $A_R \leftarrow$ elements in A that are greater than x \triangleright Divide
5: $B_L \leftarrow$ quicksort(A_L, A_L.size) \triangleright Conquer
6: $B_R \leftarrow$ quicksort(A_R, A_R.size) \triangleright Conquer
7: $t \leftarrow$ number of times x appear A
8: \textbf{return} the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

selection\((A, n, i) \)

1. **if** \(n = 1 \) **then return** \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
 ▷ Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
 ▷ Divide
5. **if** \(i \leq A_L.\text{size} \) **then**
6. **return** selection\((A_L, A_L.\text{size}, i) \)
 ▷ Conquer
7. **else if** \(i > n - A_R.\text{size} \) **then**
8. **return** selection\((A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \)
 ▷ Conquer
9. **else**
10. **return** \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

selection(*A*, *n*, *i*)

1: **if** *n* = 1 **then** return *A*
2: *x* ← random element of *A* (called **pivot**)
3: *A*_L ← elements in *A* that are less than *x* ▷ Divide
4: *A*_R ← elements in *A* that are greater than *x* ▷ Divide
5: **if** *i* ≤ *A*_L.size **then**
7: **else if** *i* > *n* − *A*_R.size **then**
9: **else**
10: return *x*

- expected running time = *O*(n)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

```
Naïve Algorithm

polyomial-multiplication(A, B, n)
1: let C[k] ← 0 for every k = 0, 1, 2, · · · , 2n − 2
2: for i ← 0 to n − 1 do
3:   for j ← 0 to n − 1 do
5: return C

Running time: O(n²)
```
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \]
\[+ r_L \]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1: if $n = 1$ then return $(A[0]B[0])$
2: $A_L \leftarrow A[0..n/2−1]$, $A_H \leftarrow A[n/2..n−1]$
3: $B_L \leftarrow B[0..n/2−1]$, $B_H \leftarrow B[n/2..n−1]$
4: $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5: $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6: $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow \text{array of } (2n−1) \text{'s}
8: for $i \leftarrow 0$ to $n−2$ do
9: $C[i] \leftarrow C[i] + C_L[i]$
10: $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] − C_L[i] − C_H[i]$
12: return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Time for combine $= O(n)$ (many technicalities omitted)
Recurrence: $T(n) = 2T(n/2) + O(n)$
Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)

Output: \(C = AB \)

Naive Algorithm: matrix-multiplication \((A, B, n)\)

1: for \(i \leftarrow 1 \) to \(n \) do
2: for \(j \leftarrow 1 \) to \(n \) do
3: \(C[i, j] \leftarrow 0 \)
4: for \(k \leftarrow 1 \) to \(n \) do
5: \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)
6: return \(C \)

- running time = \(O(n^3) \)
Try to Use Divide-and-Conquer

\[A = \begin{bmatrix} A_{11} & A_{12} \\
 A_{21} & A_{22} \end{bmatrix}_{n/2} \quad B = \begin{bmatrix} B_{11} & B_{12} \\
 B_{21} & B_{22} \end{bmatrix}_{n/2} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
 A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T\left(\frac{n}{2}\right) + O(n) \)

\[
\begin{align*}
\text{Total running time at level } i^\text{th} : & \quad \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \\
\text{Index of last level} : & \quad \lg_2 n \\
\text{Total running time} : & \quad \sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O\left(3^{\lg_2 n}\right) = O(n^{\lg_2 3}).
\end{align*}
\]
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i:
 \[
 (\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2
 \]

- Index of last level: $\log_2 n$

- Total running time:
 \[
 \sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).
 \]
Recurrences

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). **Case 2.** \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). **Case 1.** \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). **Case 2.** \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). **Case 3.** \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **c < \lg_b a**: bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
- **c > \lg_b a**: top-level dominates: \(O(n^c) \)
Fibonacci Numbers

- \(F_0 = 0, \ F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots

\[n \]-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\cdots
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1: if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2: \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)
3: \(R \leftarrow R \times R \)
4: if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5: return \(R \)

Fib(n)

1: if \(n = 0 \) then return 0
2: \(M \leftarrow \text{power}(n - 1) \)
3: return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
- \(T(n) = O(\lg n) \)
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ...:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, ...