CSE 431/531: Algorithm Analysis and Design (Spring 2020)
Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1. if $n = 1$ then
2. return A

3. else
4. $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5. $C \leftarrow$ merge-sort($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6. return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) =$ running time for sorting n numbers, then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):

$(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

\begin{algorithm}
\textbf{count-inversions}(A, n)
\begin{algorithmic}
\STATE $c \leftarrow 0$
\FOR {every $i \leftarrow 1$ to $n - 1$}
\FOR {every $j \leftarrow i + 1$ to n}
\IF {$A[i] > A[j]$} \then $c \leftarrow c + 1$ \fi
\ENDFOR
\ENDFOR
\RETURN c
\end{algorithmic}
\end{algorithm}
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$

$\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$

$m = \left| \{(i, j) : B[i] > C[j]\} \right|$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 18$

$+0 +2 +3 +3 +5 +5$

$\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}$
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count($B, C, n_1, n_2$)

1. $count \leftarrow 0$;
2. $A \leftarrow []$; $i \leftarrow 1$; $j \leftarrow 1$
3. while $i \leq n_1$ or $j \leq n_2$
4.    if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5.        append $B[i]$ to $A$; $i \leftarrow i + 1$
6.        $count \leftarrow count + (j - 1)$
7.    else
8.        append $C[j]$ to $A$; $j \leftarrow j + 1$
9. return $(A, count)$
```
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count($A, n$)  
1  if $n = 1$ then  
2      return ($A, 0$)  
3  else  
4      ($B, m_1$) ← sort-and-count($A[1..[n/2]], [n/2]$)  
5      ($C, m_2$) ← sort-and-count($A[[n/2] + 1..n], [n/2]$)  
6      ($A, m_3$) ← merge-and-count($B, C, [n/2], [n/2]$)  
7      return ($A, m_1 + m_2 + m_3$)
```

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count\((A, n)\)

1. if \(n = 1\) then
 2. return \((A, 0)\)
3. else
4. \((B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)
5. \((C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)\)
6. \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7. return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Outline

1. Divide-and-Conquer

2. Counting Inversions

3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4. Polynomial Multiplication

5. Other Classic Algorithms using Divide-and-Conquer

6. Solving Recurrences

7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

`quicksort(A, n)`

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \| \hspace{1cm} \text{Divide}
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \| \hspace{1cm} \text{Divide}
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\) \hspace{1cm} \| \hspace{1cm} \text{Conquer}
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\) \hspace{1cm} \| \hspace{1cm} \text{Conquer}
7. \(t \leftarrow \) number of times \(x \) appear in \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \lg n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a *pivot randomly* and pretend it is the median (it is practical)
quicksort(A, n)

1 if n ≤ 1 then return A
2 \(x \leftarrow \text{a random element of } A \) (\(x \) is called a pivot)
3 \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \\
4 \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \\
5 \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \\
6 \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \\
7 \(t \leftarrow \text{number of times } x \text{ appear in } A \) \\
8 return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ a random element of A (x is called a pivot)
3. $A_L \leftarrow$ elements in A that are less than x
4. $A_R \leftarrow$ elements in A that are greater than x
5. $B_L \leftarrow$ quicksort(A_L, A_L .size)
6. $B_R \leftarrow$ quicksort(A_R, A_R .size)
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition\((A, \ell, r)\)

1. \(p \leftarrow \text{random integer between } \ell \text{ and } r, \text{ swap } A[p] \text{ and } A[\ell]\)
2. \(i \leftarrow \ell, j \leftarrow r\)
3. while true do
 4. while \(i < j \text{ and } A[i] < A[j]\) do \(j \leftarrow j - 1\)
 5. if \(i = j\) then break
 6. swap \(A[i]\) and \(A[j]\); \(i \leftarrow i + 1\)
 7. while \(i < j \text{ and } A[i] < A[j]\) do \(i \leftarrow i + 1\)
 8. if \(i = j\) then break
 9. swap \(A[i]\) and \(A[j]\); \(j \leftarrow j - 1\)
10. return \(i\)
In-Place Implementation of Quick-Sort

quicksort(\(A, \ell, r\))

1. if \(\ell \geq r\) then return

2. \(m \leftarrow \text{partition}(A, \ell, r)\)

3. quicksort(\(A, \ell, m - 1\))

4. quicksort(\(A, m + 1, r\))

To sort an array \(A\) of size \(n\), call quicksort(\(A, 1, n\)).

Note: We pass the array \(A\) by reference, instead of by copying.
To merge two arrays, we need a third array with size equaling the total size of two arrays.

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

3 5 7 8 9 12 20 25 29 32 48
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

Diagram:

```
                x ≤ 2?
               /    \
        x = 1?  x = 3?
       /    \
   1    2    3    4
```
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

`quicksort(A, n)`

1. if $n \leq 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x
4. $A_R \leftarrow$ elements in A that are greater than x
5. $B_L \leftarrow$ quicksort(A_L, A_L.size)
6. $B_R \leftarrow$ quicksort(A_R, A_R.size)
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

selection\((A, n, i)\)

1. if \(n = 1\) then return \(A\)
2. \(x \leftarrow \) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \quad \| \quad \text{Divide}
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \quad \| \quad \text{Divide}
5. if \(i \leq A_L.\text{size}\) then
 6. return selection\((A_L, A_L.\text{size}, i)\) \quad \| \quad \text{Conquer}
7. elseif \(i > n - A_R.\text{size}\) then
 8. return selection\((A_R, A_R.\text{size}, i - (n - A_R.\text{size}))\) \quad \| \quad \text{Conquer}
9. else return \(x\)

Recurrence for selection: \(T(n) = T(\frac{n}{2}) + O(n)\)
Solving recurrence: \(T(n) = O(n)\)
Randomized Selection Algorithm

\textbf{selection}(A, n, i)

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \)
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \)
5. if \(i \leq A_L.\text{size} \) then
 6. return \(\text{selection}(A_L, A_L.\text{size}, i) \)
7. elseif \(i > n - A_R.\text{size} \) then
 8. return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \)
9. else return \(x \)

The expected running time is \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1\)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
= 6x^6 - 9x^5 + 18x^4 - 15x^3
+ 4x^5 - 6x^4 + 12x^3 - 10x^2
- 10x^4 + 15x^3 - 30x^2 + 25x
+ 8x^3 - 12x^2 + 24x - 20
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

\[\text{polynomial-multiplication}(A, B, n) \]

1. let \(C[k] = 0 \) for every \(k = 0, 1, 2, \ldots, 2n - 2 \)
2. for \(i \leftarrow 0 \) to \(n - 1 \)
3. \hspace{1em} for \(j \leftarrow 0 \) to \(n - 1 \)
4. \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j] \)
5. return \(C \)

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[
pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} + \text{multiply}(p_L, q_L)
\]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

`multiply(A, B, n)`

1. if $n = 1$ then return $(A[0]B[0])$
2. $A_L \leftarrow A[0..n/2-1]$, $A_H \leftarrow A[n/2..n-1]$
3. $B_L \leftarrow B[0..n/2-1]$, $B_H \leftarrow B[n/2..n-1]$
4. $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5. $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6. $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7. $C \leftarrow$ array of $(2n - 1)$ 0's
8. for $i \leftarrow 0$ to $n - 2$ do
9. \hspace{1em} $C[i] \leftarrow C[i] + C_L[i]$
10. \hspace{1em} $C[i + n] \leftarrow C[i + n] + C_H[i]$
11. \hspace{1em} $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12. return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

- Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \quad n/2
\]

\[
B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix} \quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication(A, B) recursively calls matrix_multiplication(A_{11}, B_{11}), matrix_multiplication(A_{12}, B_{21}), ...

Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)

\(T(n) = O(n^3) \)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \[T(n) = 2T(n/2) + O(n) \]

Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
- Running time = \(O(n \log n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Total running time at level i: $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$

Index of last level: $\lg_2 n$

Total running time:

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3})$$
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i? $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$
- Index of last level? $\log_2 n$
- Total running time?

$$\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem: \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **1 node**
 - \(n^c \)

- **a nodes**
 - \((n/b)^c \)
 - \((n/b)^c \)

- **a^2 nodes**
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)

- **a^3 nodes**
 - \((n/b^3)^c \)
 - \((n/b^3)^c \)

- **c < \(\log_b a \): bottom-level dominates**
 \[(\frac{a}{b^c})^{\log_b n} n^c = n^{\log_b a} \]

- **c = \(\log_b a \): all levels have same time**
 \[n^c \log_b n = O(n^c \log n) \]

- **c > \(\log_b a \): top-level dominates**
 \[O(n^c) \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

\(n \)-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
\textbf{power}(n)

1. \textbf{if} $n = 0$ \textbf{then} return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. \textbf{if} n \textbf{is odd} \textbf{then} $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. \textbf{return} R

\textbf{Fib}(n)

1. \textbf{if} $n = 0$ \textbf{then} return 0
2. $M \leftarrow \text{power}(n - 1)$
3. \textbf{return} $M[1][1]$

Recurrrence for running time? $T(n) = T(n/2) + O(1)$

$T(n) = O(\log n)$
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · ·:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time