CSE 431/531: Algorithm Analysis and Design (Fall 2022)
Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$

There are $O(lg \ n)$ levels

Running time $= O(n \ lg \ n)$

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
count-inversions\((A, n)\)

1: \(c \leftarrow 0\)
2: \textbf{for} every \(i \leftarrow 1\) to \(n - 1\) \textbf{do}
3: \hspace{1em} \textbf{for} every \(j \leftarrow i + 1\) to \(n\) \textbf{do}
4: \hspace{2em} \textbf{if} \(A[i] > A[j]\) \textbf{then} \(c \leftarrow c + 1\)
5: \textbf{return} \(c\)
Divide-and-Conquer

\[A : \quad B \quad C \]

- \(p = \lfloor n/2 \rfloor, \ B = A[1..p], \ C = A[p + 1..n] \)
- \(\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \)
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \ B = A[1..p], \ C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

Total: 18
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$;
2: $A \leftarrow$ array of size $n_1 + n_2$; $i \leftarrow 1$; $j \leftarrow 1$
3: **while** $i \leq n_1$ or $j \leq n_2$ **do**
4: **if** $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) **then**
5: $A[i + j - 1] \leftarrow B[i]$; $i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: **else**
8: $A[i + j - 1] \leftarrow C[j]$; $j \leftarrow j + 1$
9: **return** $(A, count)$
A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1. **if** $n = 1$ **then**
2. **return** $(A, 0)$
3. **else**
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. **return** $(A, m_1 + m_2 + m_3)$

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6, 7

Divide: trivial
Conquer: 4, 5
Combine: 6, 7
sort-and-count\((A, n)\)

1: if \(n = 1 \) then
2: return \((A, 0)\)
3: else
4: \((B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)
5: \((C, m_2) \leftarrow \text{sort-and-count}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)\)
6: \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7: return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n) \)
- Running time = \(O(n \log n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>QuickSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size \(n \) in \(O(n) \) time.

29 38 45 25 15 37 17 64 82 75 94 92 69 17 85

29 82 75 64 38 45 94 69 25 76 15 92 37 17 85

25 15 17 29 38 45 37 64 82 75 94 92 69 76 85
Quicksort

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\) \(\quad\) Divide
4. \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\) \(\quad\) Divide
5. \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\) \(\quad\) Conquer
6. \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\) \(\quad\) Conquer
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return concatenation of \(B_L\), \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Assumption We can choose median of an array of size \(n \) in \(O(n) \) time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in \(O(n) \) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A
2: x ← a random element of A (x is called a pivot)
3: AL ← array of elements in A that are less than x \ Divide
4: AR ← array of elements in A that are greater than x \ Divide
5: BL ← quicksort(AL, length of AL) \ Conquer
6: BR ← quicksort(AR, length of AR) \ Conquer
7: t ← number of times x appear A
8: return concatenation of BL, t copies of x, and BR
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ array of elements in A that are less than x
4: $A_R \leftarrow$ array of elements in A that are greater than x
5: $B_L \leftarrow$ quicksort(A_L, length of A_L) \hspace{1cm} \lll Conquer
6: $B_R \leftarrow$ quicksort(A_R, length of A_R) \hspace{1cm} \lll Conquer
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

\textbf{quicksort}(A, \ell, r)

1: \textbf{if } \ell \geq r \textbf{ then return}
2: \textit{m} \leftarrow \text{partition}(A, \ell, r)
3: \text{quicksort}(A, \ell, m - 1)
4: \text{quicksort}(A, m + 1, r)

To sort an array \(A \) of size \(n \), call \text{quicksort}(A, 1, n).

\textbf{Note:} We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29  32  48
```
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is \(\Omega(n \lg n) \).

- Bob has one number \(x \) in his hand, \(x \in \{1, 2, 3, \cdots, N\} \).
- You can ask Bob “yes/no” questions about \(x \).

Q: How many questions do you need to ask Bob in order to know \(x \)?

A: \(\lceil \log_2 N \rceil \).

\[x \leq 2? \]
\[x = 1? \]
\[x = 3? \]
\[1 \]
\[2 \]
\[3 \]
\[4 \]
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π?"

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(\(A, n\))

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) ▷ Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) ▷ Divide
5: \(B_L \leftarrow\) quicksort(\(A_L, A_L\).size) ▷ Conquer
6: \(B_R \leftarrow\) quicksort(\(A_R, A_R\).size) ▷ Conquer
7: \(t \leftarrow\) number of times \(x\) appear in \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Selection Algorithm with Median Finder

selection(\(A, n, i\))

1: **if** \(n = 1\) **then return** \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\triangleright\) Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\triangleright\) Divide
5: **if** \(i \leq A_L . \text{size}\) **then**
6: **return** selection\((A_L, A_L . \text{size}, i)\) \(\triangleright\) Conquer
7: **else if** \(i > n - A_R . \text{size}\) **then**
8: **return** selection\((A_R, A_R . \text{size}, i - (n - A_R . \text{size}))\) \(\triangleright\) Conquer
9: **else**
10: **return** \(x\)

- Recurrence for selection: \(T(n) = T(n/2) + O(n)\)
- Solving recurrence: \(T(n) = O(n)\)
Randomized Selection Algorithm

selection(\(A, n, i\))

1: **if** \(n = 1\) **then**
 return \(A\)
2: \(x \leftarrow\) random element of \(A\) (called **pivot**)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\triangleright\) Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\triangleright\) Divide
5: **if** \(i \leq A_L\).size **then**
6: return **selection**(\(A_L, A_L\).size, \(i\)) \(\triangleright\) Conquer
7: **else if** \(i > n - A_R\).size **then**
8: return **selection**(\(A_R, A_R\).size, \(i - (n - A_R\).size)) \(\triangleright\) Conquer
9: **else**
10: return \(x\)

expected running time = \(O(n)\)
Outline

1. Divide-and-Conquer

2. Counting Inversions

3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4. Polynomial Multiplication

5. Other Classic Algorithms using Divide-and-Conquer

6. Solving Recurrences

7. Computing \(n\)-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$
$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$
$$- 10x^4 + 15x^3 - 30x^2 + 25x$$
$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1: let \(C[k] \leftarrow 0 \) for every \(k = 0, 1, 2, \ldots, 2n - 2 \)
2: for \(i \leftarrow 0 \) to \(n - 1 \) do
3: for \(j \leftarrow 0 \) to \(n - 1 \) do
4: \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j] \)
5: return \(C \)

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \\
= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \[T(n) = 4T(n/2) + O(n) \]
- \[T(n) = O(n^2) \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]

\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1: if $n = 1$ then return $(A[0]B[0])$
2: $A_L \leftarrow A[0 .. n/2 - 1]$, $A_H \leftarrow A[n/2 .. n - 1]$
3: $B_L \leftarrow B[0 .. n/2 - 1]$, $B_H \leftarrow B[n/2 .. n - 1]$
4: $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5: $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6: $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
8: for $i \leftarrow 0$ to $n - 2$ do
9: $C[i] \leftarrow C[i] + C_L[i]$
10: $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12: return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

![Diagram of points scattered on a plane with a yellow highlighted pair of points.]

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: `matrix-multiplication(A, B, n)`

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
 A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
 A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls
 matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), …

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)

- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
There are \(O(\lg n) \) levels
Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **1 node**
 - \(n^c \)

- **a nodes**
 - \(\left(\frac{n}{b}\right)^c \)

- **a^2 nodes**
 - \(\left(\frac{n}{b^2}\right)^c \)

- **a^3 nodes**
 - \(\left(\frac{n}{b^3}\right)^c \)

-

- **c < \(\lg_b a \)**: bottom-level dominates:
 \[\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \]

- **c = \(\lg_b a \)**: all levels have same time:
 \[n^c \lg_b n = O(n^c \lg n) \]

- **c > \(\lg_b a \)**: top-level dominates:
 \[O(n^c) \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
 4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · · :
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n\lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time