CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
<table>
<thead>
<tr>
<th>Greedy Algorithm</th>
<th>Divide-and-Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>mainly for combinatorial optimization problems</td>
<td>not necessarily for combinatorial optimization problems</td>
</tr>
<tr>
<td>trivial algorithm runs in exponential time</td>
<td>trivial algorithm already runs in polynomial time</td>
</tr>
<tr>
<td>greedy algorithm gives an efficient algorithm</td>
<td>divide-and-conquer gives a more efficient algorithm</td>
</tr>
<tr>
<td>main focus of analysis: correctness of algorithm</td>
<td>main focus of analysis: running time</td>
</tr>
</tbody>
</table>
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers}, \text{then}$

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T([n/2]) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n).$ (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10  8  15  9  12
8   9  10  12  15
```

- 4 inversions (for convenience, using numbers, not indices):
 - $(10, 8)$, $(10, 9)$, $(15, 9)$, $(15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: \(c \leftarrow 0 \)
2: \textbf{for} every \(i \leftarrow 1 \) to \(n - 1 \) \textbf{do}
3: \hspace{1em} \textbf{for} every \(j \leftarrow i + 1 \) to \(n \) \textbf{do}
4: \hspace{2em} \textbf{if} \(A[i] > A[j] \) \textbf{then} \(c \leftarrow c + 1 \)
5: \textbf{return} \(c \)
Divide-and-Conquer

Let A, B, and C be partitions of A as shown:

\[A : B \quad C \]

- $p = \lfloor n/2 \rfloor$, $B = A[1..p]$, $C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$

 $m = |\{(i, j) : B[i] > C[j]\}|$

\textbf{Q:} How fast can we compute m, via trivial algorithm?

\textbf{A:} $O(n^2)$

- Can not improve the $O(n^2)$ time for counting inversions.
Divide-and-Conquer

- \(p = \lfloor n/2 \rfloor \), \(B = A[1..p] \), \(C = A[p + 1..n] \)
- \(\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \)
 \[
 m = |\{(i, j) : B[i] > C[j]\}|
 \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \quad \text{total} = 18$$

$$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$$

$$+0 \quad +2 \quad +3 \quad +3 \quad +5 \quad +5$$

$$\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}$$
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```plaintext
merge-and-count(B, C, n₁, n₂)

1: count ← 0;
2: A ← []; i ← 1; j ← 1
3: while i ≤ n₁ or j ≤ n₂ do
4:   if j > n₂ or (i ≤ n₁ and B[i] ≤ C[j]) then
5:     append B[i] to A; i ← i + 1
6:     count ← count + (j - 1)
7:   else
8:     append C[j] to A; j ← j + 1
9: return (A, count)
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count(A, n)
1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count} \left( A\left[1..\lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$
5: $(C, m_2) \leftarrow \text{sort-and-count} \left( A\left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$
```

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

Given an array \(A \) of length \(n \), the quicksort algorithm sorts the array as follows:

1. If \(n \leq 1 \), return \(A \).
2. Let \(x \) be the lower median of \(A \).
3. Let \(A_L \) be the elements in \(A \) that are less than \(x \).
4. Let \(A_R \) be the elements in \(A \) that are greater than \(x \).
5. Recursively sort \(A_L \) and \(A_R \).
6. Concatenate \(B_L \), \(t \) copies of \(x \), and \(B_R \) to obtain the sorted array.

Recurrence

\[
T(n) \leq 2T(n/2) + O(n)
\]

Running time

\(O(n \log n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

\[
\text{quicksort}(A, n) \\
1: \text{ if } n \leq 1 \text{ then return } A \\
2: \; x \leftarrow \text{ a random element of } A \; (x \text{ is called a pivot}) \\
3: \; A_L \leftarrow \text{ elements in } A \text{ that are less than } x \quad \text{|| Divide} \\
4: \; A_R \leftarrow \text{ elements in } A \text{ that are greater than } x \quad \text{|| Divide} \\
5: \; B_L \leftarrow \text{ quicksort}(A_L, A_L.\text{size}) \quad \text{|| Conquer} \\
6: \; B_R \leftarrow \text{ quicksort}(A_R, A_R.\text{size}) \quad \text{|| Conquer} \\
7: \; t \leftarrow \text{ number of times } x \text{ appear } A \\
8: \; \text{ return the array obtained by concatenating } B_L, \text{ the array containing } t \text{ copies of } x, \text{ and } B_R
\]
Assumption: There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

Quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ elements in A that are less than x \ \ Divide
4: $A_R \leftarrow$ elements in A that are greater than x \ \ Divide
5: $B_L \leftarrow$ quicksort($A_L, A_L.size$) \ \ Conquer
6: $B_R \leftarrow$ quicksort($A_R, A_R.size$) \ \ Conquer
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \log n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort\((A, \ell, r)\)

1. if \(\ell \geq r\) then return
2. \(m \leftarrow \text{partition}(A, \ell, r)\)
3. quicksort\((A, \ell, m - 1)\)
4. quicksort\((A, m + 1, r)\)

- To sort an array \(A\) of size \(n\), call quicksort\((A, 1, n)\).

Note: We pass the array \(A\) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \lg n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1. **if** \(n \leq 1 \) **then return** \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \(\triangleright \) Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \(\triangleright \) Divide
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\) \(\triangleright \) Conquer
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\) \(\triangleright \) Conquer
7. \(t \leftarrow \) number of times \(x \) appear in \(A \)
8. **return** the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Selection Algorithm with Median Finder

selection(\(A, n, i\))

1: if \(n = 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\triangleright\) Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\triangleright\) Divide
5: if \(i \leq A_L\).size then
6: return selection\((A_L, A_L\).size, \(i\)) \(\triangleright\) Conquer
7: else if \(i > n - A_R\).size then
8: return selection\((A_R, A_R\).size, \(i - (n - A_R\).size\)) \(\triangleright\) Conquer
9: else
10: return \(x\)

- Recurrence for selection: \(T(n) = T(n/2) + O(n)\)
- Solving recurrence: \(T(n) = O(n)\)
Randomized Selection Algorithm

selection\((A, n, i)\)

1: if \(n = 1\) then return \(A\)
2: \(x \leftarrow \) random element of \(A\) (called pivot)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) ▶ Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) ▶ Divide
5: if \(i \leq A_L\).size then
6: return selection\((A_L, A_L\).size, \(i)\) ▶ Conquer
7: else if \(i > n - A_R\).size then
8: return selection\((A_R, A_R\).size, \(i - (n - A_R\).size)) ▶ Conquer
9: else
10: return \(x\)

• expected running time = \(O(n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

\[\text{polynomial-multiplication}(A, B, n) \]

1: let \(C[k] \leftarrow 0 \) for every \(k = 0, 1, 2, \cdots, 2n - 2 \)
2: \textbf{for} \(i \leftarrow 0 \) to \(n - 1 \) do
3: \hspace{1em} \textbf{for} \(j \leftarrow 0 \) to \(n - 1 \) do
4: \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j] \)
5: \textbf{return} \(C \)

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
multiply(A, B, n)
\]

1: if \(n = 1 \) then return \((A[0]B[0])\)
2: \(A_L \leftarrow A[0..n/2-1] \), \(A_H \leftarrow A[n/2..n-1] \)
3: \(B_L \leftarrow B[0..n/2-1] \), \(B_H \leftarrow B[n/2..n-1] \)
4: \(C_L \leftarrow multiply(A_L, B_L, n/2) \)
5: \(C_H \leftarrow multiply(A_H, B_H, n/2) \)
6: \(C_M \leftarrow multiply(A_L + A_H, B_L + B_H, n/2) \)
7: \(C \leftarrow \) array of \((2n - 1) \) 0’s
8: for \(i \leftarrow 0 \) to \(n - 2 \) do
9: \(C[i] \leftarrow C[i] + C_L[i] \)
10: \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11: \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12: return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)
Output: \(C = AB \)

Naive Algorithm: matrix-multiplication(\(A, B, n \))

1: for \(i \leftarrow 1 \) to \(n \) do
2: \hspace{1em} for \(j \leftarrow 1 \) to \(n \) do
3: \hspace{2em} \(C[i,j] \leftarrow 0 \)
4: \hspace{1em} for \(k \leftarrow 1 \) to \(n \) do
5: \hspace{2em} \(C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j] \)
6: return \(C \)

- running time = \(O(n^3) \)
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}^{\frac{n}{2}}, \quad
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}^{\frac{n}{2}}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix_multiplication}(A, B) recursively calls matrix_multiplication}(A_{11}, B_{11}), matrix_multiplication}(A_{12}, B_{21}), \ldots

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
There are \(O(\lg n) \) levels
Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \)
- \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- \(c > \log_b a \): top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

\[\text{Fib}(n) \]

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$

$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$

\[\cdots \]

$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\log n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time