CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1: if \(n = 1 \) then
2: return \(A \)
3: else
4: \(B \leftarrow \text{merge-sort}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil) \)
5: \(C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor) \)
6: return \(\text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil) \)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12
8 9 10 12 15

- 4 inversions (for convenience, using numbers, not indices): (10, 8), (10, 9), (15, 9), (15, 12)
Naive Algorithm for Counting Inversions

```plaintext
count-inversions(A, n)
1:  c ← 0
2:  for every i ← 1 to n − 1 do
3:      for every j ← i + 1 to n do
4:          if A[i] > A[j] then c ← c + 1
5:  return c
```
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = |\{(i, j) : B[i] > C[j]\}| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \left\{ (i, j) : B[i] > C[j] \right\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\end{align*}
\]

\[
\begin{align*}
& +0 \\
& +2 \\
& +3 \quad +3 \\
& +5 \quad +5 \\
\end{align*}
\]

\[
\begin{align*}
3 & \quad 5 \quad 7 \quad 8 \quad 9 \quad 12 \quad 20 \quad 25 \quad 29 \quad 32 \quad 48 \\
\end{align*}
\]

Total $= 18$
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```plaintext
merge-and-count(B, C, n1, n2)

1:  count ← 0;
2:  A ← array of size n1 + n2; i ← 1; j ← 1
3:  while i ≤ n1 or j ≤ n2 do
4:    if j > n2 or (i ≤ n1 and B[i] ≤ C[j]) then
5:      A[i + j - 1] ← B[i]; i ← i + 1
6:    count ← count + (j - 1)
7:    else
8:      A[i + j - 1] ← C[j]; j ← j + 1
9:  return (A, count)
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
</tr>
<tr>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
<td>17</td>
<td>85</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
</tr>
<tr>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
</tr>
</tbody>
</table>
Quicksort

Quicksort(A, n)

1: **if** $n \leq 1$ **then return** A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ array of elements in A that are less than x \ Divide
4: $A_R \leftarrow$ array of elements in A that are greater than x \ Divide
5: $B_L \leftarrow$ quicksort(A_L, length of A_L) \ Conquer
6: $B_R \leftarrow$ quicksort(A_R, length of A_R) \ Conquer
7: $t \leftarrow$ number of times x appear A
8: **return** concatenation of B_L, t copies of x, and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a pivot randomly and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1. \textbf{if} \(n \leq 1 \) \textbf{then return} \(A \)
2. \(x \leftarrow \) a random element of \(A \) \((x\) is called a pivot\)
3. \(A_L \leftarrow \) array of elements in \(A \) that are less than \(x \) \(\|\) Divide
4. \(A_R \leftarrow \) array of elements in \(A \) that are greater than \(x \) \(\|\) Divide
5. \(B_L \leftarrow \) quicksort\((A_L, \text{length of } A_L)\) \(\|\) Conquer
6. \(B_R \leftarrow \) quicksort\((A_R, \text{length of } A_R)\) \(\|\) Conquer
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. \textbf{return} concatenation of \(B_L \), \(t \) copies of \(x \), and \(B_R \)
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer program is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random.
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1. **if** $n \leq 1$ **then return** A
2. $x \leftarrow$ a random element of A (*x* is called a pivot)
3. $A_L \leftarrow$ array of elements in A that are less than x \hspace{1cm} \lll \text{Divide}
4. $A_R \leftarrow$ array of elements in A that are greater than x \hspace{1cm} \lll \text{Divide}
5. $B_L \leftarrow$ quicksort(A_L, length of A_L) \hspace{1cm} \lll \text{Conquer}
6. $B_R \leftarrow$ quicksort(A_R, length of A_R) \hspace{1cm} \lll \text{Conquer}
7. $t \leftarrow$ number of times x appear in A
8. **return** concatenation of B_L, t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
\textbf{partition}(A, ℓ, r)

1: $p \leftarrow \text{random integer between } \ell \text{ and } r$, swap $A[p]$ and $A[\ell]$

2: $i \leftarrow \ell, j \leftarrow r$

3: \textbf{while} true \textbf{do}

4: \hspace{1em} \textbf{while} $i < j$ \text{ and } $A[i] < A[j]$ \textbf{do} $j \leftarrow j - 1$

5: \hspace{1em} \textbf{if} $i = j$ \textbf{then} break

6: \hspace{1em} swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$

7: \hspace{1em} \textbf{while} $i < j$ \text{ and } $A[i] < A[j]$ \textbf{do} $i \leftarrow i + 1$

8: \hspace{1em} \textbf{if} $i = j$ \textbf{then} break

9: \hspace{1em} swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$

10: \textbf{return} i
In-Place Implementation of Quick-Sort

quicksort\((A, \ell, r) \)

1: \textbf{if} \(\ell \geq r \) \textbf{then return}
2: \(m \leftarrow \text{partition}(A, \ell, r) \)
3: quicksort\((A, \ell, m - 1) \)
4: quicksort\((A, m + 1, r) \)

- To sort an array \(A \) of size \(n \), call quicksort\((A, 1, n) \).

\textbf{Note:} We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

\[x \leq 2?\]
\[
\begin{align*}
&x = 1? \\
&x = 3? \\
&1 \quad 2 \\
&3 \quad 4
\end{align*}
\]
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(*A, n*)

1. **if** *n* ≤ 1 **then return** *A*
2. *x* ← lower median of *A*
3. *A_L* ← elements in *A* that are less than *x*
4. *A_R* ← elements in *A* that are greater than *x*
5. *B_L* ← quicksort(*A_L, A_L.size*)
7. *t* ← number of times *x* appear in *A*
8. **return** the array obtained by concatenating *B_L*, the array containing *t* copies of *x*, and *B_R*
Selection Algorithm with Median Finder

selection(A, n, i)

1. **if** $n = 1$ **then** return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x
 ▷ Divide
4. $A_R \leftarrow$ elements in A that are greater than x
 ▷ Divide
5. **if** $i \leq A_L$.size **then**
6. return **selection**(A_L, A_L.size, i)
 ▷ Conquer
7. **else if** $i > n – A_R$.size **then**
8. return **selection**(A_R, A_R.size, $i – (n – A_R$.size))
 ▷ Conquer
9. **else**
10. return x

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
- Solving recurrence: $T(n) = O(n)$
Randomized Selection Algorithm

selection(A, n, i)

1: if $n = 1$ then return A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_L \leftarrow$ elements in A that are less than x ▷ Divide
4: $A_R \leftarrow$ elements in A that are greater than x ▷ Divide
5: if $i \leq A_L$.size then
6: return selection(A_L, A_L.size, i) ▷ Conquer
7: else if $i > n - A_R$.size then
8: return selection(A_R, A_R.size, $i - (n - A_R$.size)) ▷ Conquer
9: else
10: return x

- expected running time $= O(n)$
1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1. let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \ldots, 2n - 2\)
2. for \(i \leftarrow 0\) to \(n - 1\) do
3. \hspace{1em} for \(j \leftarrow 0\) to \(n - 1\) do
4. \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5. return \(C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2}
+ multiply(p_L, q_L)\]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

multiply\((A, B, n)\)

1: if \(n = 1 \) then return \((A[0]B[0])\)
2: \(A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3: \(B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4: \(C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \)
5: \(C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \)
6: \(C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \)
7: \(C \leftarrow \text{array of } (2n - 1) \text{'0's} \)
8: for \(i \leftarrow 0 \) to \(n - 2 \) do
9: \(C[i] \leftarrow C[i] + C_L[i] \)
10: \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11: \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12: return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. **for** $i \leftarrow 1$ **to** n **do**
2.
3.
4.
5.
6. **return** C

- running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- matrix_multiplication\((A, B)\) recursively calls matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence: \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

![Recursion Tree Diagram]

- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg_2 3)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O\left(n^{\lg_b a}\right) & \text{if } c < \lg_b a \\
O\left(n^c \lg n\right) & \text{if } c = \lg_b a \\
O\left(n^c\right) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

\begin{itemize}
 \item \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \)
 \item \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
 \item \(c > \log_b a \): top-level dominates: \(O(n^c) \)
\end{itemize}
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

\[\text{n-th Fibonacci Number} \]

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: **for** $i \leftarrow 2$ **to** n **do**
4: \hspace{0.5cm} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: **return** $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\
F_{n-2} \end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\
F_{n-3} \end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\
F_0 \end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time