CSE 431/531: Algorithm Analysis and Design (Spring 2022)
Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2:
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], [n/2]$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], [n/2]$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. else
4. $B \leftarrow$ merge-sort($A[1..\lceil n/2 \rceil], \lceil n/2 \rceil$)
5. $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor$)
6. return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(lg\ n)$ levels
- Running time = $O(n\ lg\ n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) =$ running time for sorting n numbers, then

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later).
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input:

An sequence A of n numbers

Output:

Number of inversions in A

Example:

```
10
8
15
9
12
```

$10, 8, 15, 9, 12$

4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
</table>

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

$$
\begin{array}{cccccc}
10 & 8 & 15 & 9 & 12 \\
8 & 9 & 10 & 12 & 15 \\
\end{array}
$$

4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10 8 15 9 12
8 9 10 12 15
```

- 4 inversions (for convenience, using numbers, not indices): $(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

\[
\text{count-inversions}(A, n)
\]

1: \(c \leftarrow 0\)
2: \textbf{for} every \(i \leftarrow 1\) to \(n - 1\) \textbf{do}
3: \textbf{for} every \(j \leftarrow i + 1\) to \(n\) \textbf{do}
4: \textbf{if} \(A[i] > A[j]\) \textbf{then} \(c \leftarrow c + 1\)
5: \textbf{return} \(c\)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>B</th>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total}= 0$

+0

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[\begin{align*}
B & : 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C & : 5 \quad 7 \quad 9 \quad 25 \quad 29
\end{align*}\]

\[\text{total} = 0\]

\[+0\]

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$

3 5

$\text{total}= 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

$\text{total} = 0$

$+0$

\[\begin{array}{cc}
3 & 5 \\
\end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$
total$= 0$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$+0$

$\begin{array}{ccc}
3 & 5 & 7 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0

+0

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$

3 5 7 8

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{bmatrix} 3 & 8 & 12 & 20 & 32 & 48 \end{bmatrix}$

C: $\begin{bmatrix} 5 & 7 & 9 & 25 & 29 \end{bmatrix}$

$\text{total} = 2$

$+0$ $+2$

$\begin{bmatrix} 3 & 5 & 7 & 8 \end{bmatrix}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 2$

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

Total = 2

$+0$ $+2$

$\begin{array}{cccccc} 3 & 5 & 7 & 8 & 9 \end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}

B: & 3 & 8 & 12 & 20 & 32 & 48 \\

C: & 5 & 7 & 9 & 25 & 29 \\

\end{array}
\]

\begin{array}{cccccc}

+0 & +2 & +3 \\

3 & 5 & 7 & 8 & 9 & 12 \\
\end{array}

\text{total} = 5
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 5$

$+0$ $+2$ $+3$

3 5 7 8 9 12
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 8$

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 8

+0 +2 +3 +3

3 5 7 8 9 12 20
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total: 8

B: 3 5 7 8 9 12 20 25

C: 5 7 9 25 29
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
C: 5 7 9 25 29

$+0$ $+2$ $+3$ $+3$

3 5 7 8 9 12 20 25

$\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \quad \text{total} = 8 \]

\[C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

\[+0 \quad +2 \quad +3 \quad +3 \]

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 8$

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$\text{total} = 13$

B: \[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$\text{total} = 13$

$3 \ 5 \ 7 \ 8 \ 9 \ 12 \ 20 \ 25 \ 29 \ 32$

$+0 \ +2 \ +3 \ +3 \ +5$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\end{align*}
\]

\[
\begin{align*}
\text{total} &= 13 \\
+0 & \quad +2 \quad +3 \quad +3 \quad +5 \\
3 \quad 5 \quad 7 \quad 8 \quad 9 \quad 12 \quad 20 \quad 25 \quad 29 \quad 32
\end{align*}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B:$

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

$C:$

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}
\]

$\text{total} = 18$

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

B: C: total = 18

+0 +2 +3 +3 +5 +5

3 5 7 8 9 12 20 25 29 32 48
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$
2: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: append $B[i]$ to $A; i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: else
8: append $C[j]$ to $A; j \leftarrow j + 1$
9: return $(A, count)$
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count(A, n)
```

1. **if** $n = 1$ **then**
2. **return** $(A, 0)$
3. **else**
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. **return** $(A, m_1 + m_2 + m_3)$
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n) = \begin{cases}
\text{if } n = 1 \text{ then} & (A, 0) \\
\text{return} & (A, 0) \\
\text{else} & \\
(B, m_1) & \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor) \\
(C, m_2) & \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil) \\
(A, m_3) & \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil) \\
\text{return} & (A, m_1 + m_2 + m_3)
\end{cases}
\]
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lceil n/2 \rceil], \lceil n/2 \rceil$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1: \textbf{if} $n = 1$ \textbf{then}
2: \quad \textbf{return} $(A, 0)$
3: \textbf{else}
4: \quad $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: \quad $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: \quad $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: \quad \textbf{return} $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Recurse</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td>Combine</td>
<td>Trivial</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
</tr>
<tr>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```
Assumption We can choose median of an array of size n in $O(n)$ time.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```

```
29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
```
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```

```
29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
```
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \| Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \| Divide
5: \(B_L \leftarrow\) quicksort\((A_L, A_L\text{.size})\) \hspace{1cm} \| Conquer
6: \(B_R \leftarrow\) quicksort\((A_R, A_R\text{.size})\) \hspace{1cm} \| Conquer
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Quicksort

quicksort(A, n)

1: if \(n \leq 1 \) then return \(A \)
2: \(x \leftarrow \) lower median of \(A \)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
 \(\|\| \) Divide
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
 \(\|\| \) Divide
5: \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\)
 \(\|\| \) Conquer
6: \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\)
 \(\|\| \) Conquer
7: \(t \leftarrow \) number of times \(x \) appear \(A \)
8: return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
quicksort(A, n)

1: if $n \leq 1$ then return A

2: $x \leftarrow$ lower median of A

3: $A_L \leftarrow$ elements in A that are less than x
 \hspace{1cm} \text{\textbf{\textbackslash \textbackslash \textbf{Divide}}}

4: $A_R \leftarrow$ elements in A that are greater than x
 \hspace{1cm} \text{\textbf{\textbackslash \textbackslash \textbf{Divide}}}

5: $B_L \leftarrow$ quicksort(A_L, A_L.size)
 \hspace{1cm} \text{\textbf{\textbackslash \textbackslash \textbf{Conquer}}}

6: $B_R \leftarrow$ quicksort(A_R, A_R.size)
 \hspace{1cm} \text{\textbf{\textbackslash \textbackslash \textbf{Conquer}}}

7: $t \leftarrow$ number of times x appear

8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a **pivot randomly** and pretend it is the median (it is practical)
quickselect(A, n)

1: if n \leq 1 then return A
2: x \leftarrow \text{a random element of } A \ (x \text{ is called a pivot)}
3: A_L \leftarrow \text{elements in } A \text{ that are less than } x \ \text{// Divide}
4: A_R \leftarrow \text{elements in } A \text{ that are greater than } x \ \text{// Divide}
5: B_L \leftarrow \text{quickselect}(A_L, A_L.\text{size}) \ \text{// Conquer}
6: B_R \leftarrow \text{quickselect}(A_R, A_R.\text{size}) \ \text{// Conquer}
7: t \leftarrow \text{number of times } x \text{ appear in } A
8: \text{return the array obtained by concatenating } B_L, \text{ the array containing } t \text{ copies of } x, \text{ and } B_R
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random.
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ elements in A that are less than x
4: $A_R \leftarrow$ elements in A that are greater than x
5: $B_L \leftarrow$ quicksort(A_L, A_L.size)
6: $B_R \leftarrow$ quicksort(A_R, A_R.size)
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccccccc}
17 & 64 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 82 & 85 \\
\end{array} \]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  64  29  38  45  94  69  25  76  15  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

\[
\begin{array}{ccccccccccccccc}
17 & 37 & 64 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 75 & 82 & 85 \\
\end{array}
\]

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 64 & 92 & 75 & 82 & 85 \\
\end{array} \]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

![Array Diagram](image)

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  15  29  38  45  25  64  69  76  94  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 25 & 64 & 69 & 76 & 94 & 92 & 75 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition\((A, \ell, r)\)

1: \(p \leftarrow \text{random integer between } \ell \text{ and } r, \text{ swap } A[p] \text{ and } A[\ell] \)
2: \(i \leftarrow \ell, j \leftarrow r \)
3: \textbf{while true do}
4: \textbf{while } i < j \text{ and } A[i] < A[j] \text{ do } j \leftarrow j - 1
5: \textbf{if } i = j \textbf{ then break}
6: \text{swap } A[i] \text{ and } A[j]; i \leftarrow i + 1
7: \textbf{while } i < j \text{ and } A[i] < A[j] \text{ do } i \leftarrow i + 1
8: \textbf{if } i = j \textbf{ then break}
9: \text{swap } A[i] \text{ and } A[j]; j \leftarrow j - 1
10: \textbf{return } i
In-Place Implementation of Quick-Sort

quicksort\((A, \ell, r)\)

1. if \(\ell \geq r \) then return
2. \(m \leftarrow \text{partition}(A, \ell, r) \)
3. quicksort\((A, \ell, m - 1)\)
4. quicksort\((A, m + 1, r)\)

- To sort an array \(A \) of size \(n \), call quicksort\((A, 1, n)\).

Note: We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8 12 20 32 48
5  7  9 25 29
3  5  7
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1?

x \leq 2?

x = 3?

1 2 3 4
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.

 You can ask Bob "yes/no" questions about x.

 Q: How many questions do you need to ask Bob in order to know x?

 A: $\lceil \log_2 N \rceil$.

 $x = 1?$

 $x \leq 2?$

 $x = 3?$

 $1 2 3 4$
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

\[x \leq 2? \]

\[x = 1? \quad \text{1} \quad \text{2} \]

\[x = 3? \quad \text{3} \quad \text{4} \]
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \{1, 2, 3, \ldots , n\} in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than \(O(n \log n) \) for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation \(\pi \) over \(\{1, 2, 3, \cdots, n\} \) in his hand.
- You can ask Bob “yes/no” questions about \(\pi \).

Q: How many questions do you need to ask in order to get the permutation \(\pi \)?

A: \(\log_2 n! = \Theta(n \log n) \)
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

Sorting solves the problem in time $O(n \lg n)$. Our goal: $O(n)$ running time
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(A, n)

1: if n ≤ 1 then return A
2: x ← lower median of A
3: \(A_L\) ← elements in A that are less than x ▶ Divide
4: \(A_R\) ← elements in A that are greater than x ▶ Divide
5: \(B_L\) ← quicksort\((A_L, A_L.size)\) ▶ Conquer
6: \(B_R\) ← quicksort\((A_R, A_R.size)\) ▶ Conquer
7: t ← number of times x appear A
8: return the array obtained by concatenating \(B_L\), the array containing t copies of x, and \(B_R\)
Selection Algorithm with Median Finder

selection(A, n, i)

1: if $n = 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x ▶ Divide
4: $A_R \leftarrow$ elements in A that are greater than x ▶ Divide
5: if $i \leq A_L \cdot \text{size}$ then
6: return selection($A_L, A_L \cdot \text{size}, i$) ▶ Conquer
7: else if $i > n - A_R \cdot \text{size}$ then
8: return selection($A_R, A_R \cdot \text{size}, i - (n - A_R \cdot \text{size})$) ▶ Conquer
9: else
10: return x
Selection Algorithm with Median Finder

\[\text{selection}(A, n, i) \]

1: if \(n = 1 \) then return \(A \)
2: \(x \leftarrow \) lower median of \(A \)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) ▷ Divide
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) ▷ Divide
5: if \(i \leq A_L.\text{size} \) then
6: return \(\text{selection}(A_L, A_L.\text{size}, i) \) ▷ Conquer
7: else if \(i > n - A_R.\text{size} \) then
8: return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) ▷ Conquer
9: else
10: return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
Selection Algorithm with Median Finder

selection(*A*, *n*, *i*)

1: **if** *n* = 1 **then** return *A*
2: *x* ← lower median of *A*
3: *A*ₐ ← elements in *A* that are less than *x* ▷ Divide
4: *A*ᵣ ← elements in *A* that are greater than *x* ▷ Divide
5: **if** *i* ≤ *A*ₐ.size **then**
7: **else if** *i* > *n* − *A*ᵣ.size **then**
9: **else**
10: return *x*

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\textbf{selection}(A, n, i)

1: \textbf{if} \ n = 1 \ \textbf{then} \textbf{return} \ A
2: \ x \leftarrow \text{random element of} \ A \ (\text{called pivot})
3: \ A_L \leftarrow \text{elements in} \ A \ \text{that are less than} \ x \quad \triangleright \text{Divide}
4: \ A_R \leftarrow \text{elements in} \ A \ \text{that are greater than} \ x \quad \triangleright \text{Divide}
5: \textbf{if} \ i \leq A_L.\text{size} \ \textbf{then}
6: \quad \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \text{Conquer}
7: \textbf{else if} \ i > n - A_R.\text{size} \ \textbf{then}
8: \quad \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \text{Conquer}
9: \textbf{else}
10: \quad \textbf{return} \ x
Randomized Selection Algorithm

selection(*A, n, i*)

1: **if** *n* = 1 **then** return *A*
2: *x* ← random element of *A* (called pivot)
3: *A*_L ← elements in *A* that are less than *x* ▷ Divide
4: *A*_R ← elements in *A* that are greater than *x* ▷ Divide
5: **if** *i* ≤ *A*_L.size **then**
7: else **if** *i* > *n* − *A*_R.size **then**
8: return *selection*(*A*_R, *A*_R.size, *i* − (*n* − *A*_R.size)) ▷ Conquer
9: **else**
10: return *x*

● expected running time = *O*(*n*)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20$$
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$
$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$
$$- 10x^4 + 15x^3 - 30x^2 + 25x$$
$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: \hspace{1em} for $j \leftarrow 0$ to $n - 1$ do
4: \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1: let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2: for \(i \leftarrow 0\) to \(n - 1\) do
3: for \(j \leftarrow 0\) to \(n - 1\) do
4: \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5: return \(C\)

Running time: \(O(n^2)\)
$p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)$

$q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
\begin{align*}
pq &= (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \\
&= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\end{align*}
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_Lq_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

Recurrence: \(T(n) = 4T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[\begin{align*}
 pq &= (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\
 &= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\end{align*} \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} + \text{multiply}(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
\[\text{multiply}(p, q) = r_H \times x^n + \text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \times x^{n/2} + r_L \]

Solving Recurrence:
\[T(n) = 3T(n/2) + O(n) \]
\[T(n) = O(n \log_3 2) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \]
\[+ r_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\lg_2 3}) = O(n^{1.585}) \)
Assumption
n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1: if $n = 1$ then return $(A[0]B[0])$
2: $A_L \leftarrow A[0..n/2-1]$, $A_H \leftarrow A[n/2..n-1]$
3: $B_L \leftarrow B[0..n/2-1]$, $B_H \leftarrow B[n/2..n-1]$
4: $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5: $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6: $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow$ array of $(2n-1)$ 0’s
8: for $i \leftarrow 0$ to $n-2$ do

9: \hspace{1em} $C[i] \leftarrow C[i] + C_L[i]$
10: \hspace{1em} $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: \hspace{1em} $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12: return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: \(n\) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2)\) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair. For each point, only need to consider $O(1)$ boxes nearby. Time for combine = $O(n)$ (many technicalities omitted).

Recurrence: $T(n) = 2T(n/2) + O(n)$.

Running time: $O(n \log n)$.

\[
d \leq \frac{\delta}{2}
\]
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Time for combine = $O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C = AB$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

ingredient time = $O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: $\text{matrix-multiplication}(A, B, n)$

1. **for** $i \leftarrow 1$ to n **do**
2. **for** $j \leftarrow 1$ to n **do**
3. $C[i, j] \leftarrow 0$
4. **for** $k \leftarrow 1$ to n **do**
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. **return** C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

matrix_multiplication(A, B) recursively calls matrix_multiplication(A_{11}, B_{11}), matrix_multiplication(A_{12}, B_{21}), ...
Try to Use Divide-and-Conquer

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \frac{n}{2} \quad \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad \frac{n}{2}$$

$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

\(\text{matrix_multiplication}(A, B)\) recursively calls
\(\text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}),\) ...

Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)

\(T(n) = O(n^3)\)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

- Total running time at level i?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

![Recursion Tree Diagram]

- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$

Index of last level? $\lg_2 n$

Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3})$$
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

n^2

- $(n/2)^2$
 - $(n/4)^2$
 - $(n/8)^2$
 - $(n/8)^2$
 - $(n/8)^2$

- $(n/2)^2$
 - $(n/4)^2$
 - $(n/4)^2$
 - $(n/4)^2$
 - $(n/4)^2$

- $(n/2)^2$
 - $(n/4)^2$
 - $(n/4)^2$
 - $(n/4)^2$
 - $(n/4)^2$

Total running time at level i?

Index of last level?

Total running time?

$\sum_{i=0}^{\lg 2 n} (3/4)^i n^2 = O(n^2)$.
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

![Recursion Tree Diagram]

- Total running time at level i? $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$
- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\log_2 n \)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \((n/2^i)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\lg_2 n \)

- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = \]

\[
= \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\log_2 n \)

- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \log_2^3)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem
\[T(n) = aT(n/b) + O(n^c), \text{ where } a \geq 1, b > 1, c \geq 0 \text{ are constants. Then,} \]

\[
T(n) = \begin{cases}
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n) & \text{if } c = \lg_b a \\
O(n^2) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c), \) where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, \ b > 1, \ c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2)\). Case 2. \(T(n) = O(n^2 \lg n)\)
- Ex: \(T(n) = 3T(n/2) + O(n)\). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem: $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: $T(n) = T(n/2) + O(1)$. Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lfloor \log_b a \rfloor}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem
\[T(n) = aT(n/b) + O(n^c), \text{ where } a \geq 1, b > 1, c \geq 0 \text{ are constants.} \]
Then,
\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:**
 \[T(n) = 4T(n/2) + O(n^2). \text{ Case 2. } T(n) = O(n^2 \lg n) \]
- **Ex:**
 \[T(n) = 3T(n/2) + O(n). \text{ Case 1. } T(n) = O(n^{\lg_2 3}) \]
- **Ex:**
 \[T(n) = T(n/2) + O(1). \text{ Case 2. } T(n) = O(\lg n) \]
- **Ex:**
 \[T(n) = 2T(n/2) + O(n^2). \text{ Case 3. } T(n) = O(n^2) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- 1 node
- \(a\) nodes
- \(a^2\) nodes
- \(a^3\) nodes
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\(n^c \)

\(\frac{a}{b^c} n^c \)

\(\left(\frac{a}{b^c}\right)^2 n^c \)

\(\left(\frac{a}{b^c}\right)^3 n^c \)

a nodes

\((n/b)^c \)

\((n/b)^c \)

\((n/b)^c \)

\((n/b)^c \)

a^2 nodes

\((n/b^2)^c \)

a^3 nodes

\((n/b^3)^c \)

\((n/b^3)^c \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\(n^c \)

\(\frac{a}{b^c} n^c \)

\(a \) nodes

\((n/b)^c \)

\((n/b)^c \)

\((n/b)^c \)

\((n/b)^c \)

\(\frac{a}{b^c} n^c \)

\(a^2 \) nodes

\((n/b^2)^c \)

\((n/b^2)^c \)

\((n/b^2)^c \)

\((n/b^2)^c \)

\((a/b^c)^2 n^c \)

\(a^3 \) nodes

\((n/b^3)^c \)

\((a/b^c)^3 n^c \)

\(\cdots \)

\(c < \lg_b a \) : bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^c \log_b a \)
- \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \)
- \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- \(c > \log_b a \): top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

<table>
<thead>
<tr>
<th>Fib(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if $n = 0$ return 0</td>
</tr>
<tr>
<td>2: if $n = 1$ return 1</td>
</tr>
<tr>
<td>3: return Fib(n - 1) + Fib(n - 2)</td>
</tr>
</tbody>
</table>

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2: $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$

3: $R \leftarrow R \times R$

4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

Fib(n)

1: if $n = 0$ then return 0

2: $M \leftarrow \text{power}(n - 1)$

3: return $M[1][1]$
power(n)

1. if \(n = 0 \) then return \(
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\)
2. \(R \leftarrow \text{power}([n/2]) \)
3. \(R \leftarrow R \times R \)
4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5. return \(R \)

Fib(n)

1. if \(n = 0 \) then return 0
2. \(M \leftarrow \text{power}(n - 1) \)
3. return \(M[1][1] \)

- Recurrence for running time?
power(n)

1: if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2: \(R \leftarrow \text{power}([n/2]) \)
3: \(R \leftarrow R \times R \)
4: if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5: return \(R \)

Fib(n)

1: if \(n = 0 \) then return 0
2: \(M \leftarrow \text{power}(n - 1) \)
3: return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
power(n)

1: if \(n = 0\) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
2: \(R \leftarrow \text{power}([n/2])\)
3: \(R \leftarrow R \times R\)
4: if \(n\) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\)
5: return \(R\)

Fib(n)

1: if \(n = 0\) then return 0
2: \(M \leftarrow \text{power}(n - 1)\)
3: return \(M[1][1]\)

- Recurrence for running time? \(T(n) = T(n/2) + O(1)\)
- \(T(n) = O(\lg n)\)
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Running time $= O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

Write down recurrence for running time
Solve recurrence using master theorem
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, …:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, …:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]
- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]
- Usually, designing better algorithm for “combine” step is key to improve running time