CSE 431/531: Algorithm Analysis and Design (Fall 2021)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing \(n \)-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort$(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $C \leftarrow$ merge-sort$(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6: return merge$(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$

There are $O(\log n)$ levels

Running time = $O(n \log n)$

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- $T(n) =$ running time for sorting n numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \log n)$ (we shall show how later)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A
Def. Given an array \(A \) of \(n \) integers, an inversion in \(A \) is a pair \((i, j)\) of indices such that \(i < j \) and \(A[i] > A[j] \).

Counting Inversions

Input: an sequence \(A \) of \(n \) numbers

Output: number of inversions in \(A \)

Example:

\[
\begin{array}{cccccc}
10 & 8 & 15 & 9 & 12 \\
\end{array}
\]
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10  8  15  9  12
8   9  10  12  15
```

▶ 4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

\[
\begin{array}{cccccc}
10 & 8 & 15 & 9 & 12 \\
8 & 9 & 10 & 12 & 15 \\
\end{array}
\]

▶ 4 inversions (for convenience, using numbers, not indices): $(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: $c \leftarrow 0$
2: for every $i \leftarrow 1$ to $n - 1$ do
3: for every $j \leftarrow i + 1$ to n do
4: if $A[i] > A[j]$ then $c \leftarrow c + 1$
5: return c
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = |\{(i, j) : B[i] > C[j]\}| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[
\text{#invs}(A) = \text{#invs}(B) + \text{#invs}(C) + m
\]

\[
m = \left| \{(i, j) : B[i] > C[j]\} \right|
\]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{tabular}{c|c|c|c|c|c} 3 & 8 & 12 & 20 & 32 & 48 \end{tabular} \quad \text{total} = 0

C: \begin{tabular}{c|c|c|c|c} 5 & 7 & 9 & 25 & 29 \end{tabular}

$+0$

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$

Total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \\ \end{array}$

C: $\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \\ \end{array}$

$\text{total} = 0$

$+0$

$\begin{array}{cc} 3 & 5 \\ \end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

B: 3 8 12 20 32 48
total = 0

C: 5 7 9 25 29
Counting Inversions between B and C

Count pairs i,j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

total $= 0$

$+0$

$\begin{array}{ccc}
3 & 5 & 7 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48 total = 0

C: 5 7 9 25 29

+0

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccc} 5 & 7 & 9 & 25 \end{array} \]

\[\text{total} = 2 \]

B: \[\begin{array}{cccc} 3 & 5 & 7 & 8 \end{array} \]

C: \[\begin{array}{cccc} +0 & +2 \end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}3 & 8 & 12 & 20 & 32 & 48\end{array}$

C: $\begin{array}{cccccc}5 & 7 & 9 & 25 & 29\end{array}$

Total = 2

$\begin{array}{c}+0 \quad +2 \\
3 \quad 5 \quad 7 \quad 8\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2$

Total: 2
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ +2

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$ $+3$

3 5 7 8 9 12

$\text{total} = 5$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 5$

+0 +2 +3

3 5 7 8 9 12
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
& +0 & +2 & +3 & +3 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
\end{array}
\]

total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3 \ 8 \ 12 \ 20 \ 32 \ 48\]

C: \[5 \ 7 \ 9 \ 25 \ 29\]

$+$0 $+$2 $+$3 $+$3

3 5 7 8 9 12 20

Total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

+0 +2 +3 +3

$3 5 7 8 9 12 20 25

\text{total}= 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48 total $= 8$

C: 5 7 9 25 29

B: 3 8 12 20 32 48 total $= 8$

C: 5 7 9 25 29

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \\ \end{array}$

$C: \begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \\ \end{array}$

Total = 8

$+0 \quad +2 \quad +3 \quad +3$

$\begin{array}{cccccccc} 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\ \end{array}$
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 &
\end{array}
\]

\[
\text{total} = 8
\]

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29
\end{array}
\]

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \\ \end{array}$ \hspace{1cm} \text{total} = 13

$C: \begin{array}{cccc} 5 & 7 & 9 & 25 & 29 \\ \end{array}$

$+0 \quad +2 \quad +3 \quad +3 \quad +5$

$\begin{array}{cccccc} 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\ \end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48 \hspace{1cm} \text{total} = 13$

C: 5 7 9 25 29

+0 +2 +3 +3 +5

\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32
\end{array}
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

3 8 12 20 32 48
5 7 9 25 29

+0 +2 +3 +3 +5 +5

3 5 7 8 9 12 20 25 29 32 48

Total = 18
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{tabular}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{tabular}

C: \begin{tabular}{cccc}
5 & 7 & 9 & 25 & 29 \\
\end{tabular}

$\text{total} = 18$

\begin{tabular}{cccccc}
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{tabular}

\begin{tabular}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{tabular}
Count Inversions between B and C

Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$
2: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: append $B[i]$ to A; $i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: else
8: append $C[j]$ to A; $j \leftarrow j + 1$
9: return $(A, count)$
A procedure that returns the sorted array of A and counts the number of inversions in A:

$$\text{sort-and-count}(A, n)$$

1: if $n = 1$ then
2: \hspace{1em} return $(A, 0)$
3: else
4: \hspace{1em} $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: \hspace{1em} $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: \hspace{1em} $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: \hspace{1em} return $(A, m_1 + m_2 + m_3)$
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

<table>
<thead>
<tr>
<th>sort-and-count(A, n)</th>
<th>Divide: trivial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if $n = 1$ then</td>
<td>Conquer: 4, 5</td>
</tr>
<tr>
<td>2: return $(A, 0)$</td>
<td>Combine: 6, 7</td>
</tr>
<tr>
<td>3: else</td>
<td></td>
</tr>
<tr>
<td>4: $(B, m_1) \leftarrow$</td>
<td></td>
</tr>
<tr>
<td>5: sort-and-count</td>
<td></td>
</tr>
<tr>
<td>6: $(A, m_3) \leftarrow$</td>
<td></td>
</tr>
</tbody>
</table>
| 7: return $(A, m_1 + m_2 + m_3)$ | }
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lceil n/2 \rceil, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection

 Quicksort

 Lower Bound for Comparison-Based Sorting Algorithms

 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing \(n\)-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Conquer</th>
<th>Combine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
<tr>
<td>Recurse</td>
<td>Trivial</td>
<td>Separates small and big numbers</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size \(n \) in \(O(n) \) time.

\[
\begin{array}{cccccccccccccc}
29 & 82 & 75 & 64 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85
\end{array}
\]
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

quicksort\((A, n) \)

1: if \(n \leq 1 \) then return \(A \)
2: \(x \leftarrow \) lower median of \(A \)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{2cm} \text{Divide}
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{2cm} \text{Divide}
5: \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size}) \) \hspace{2cm} \text{Conquer}
6: \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size}) \) \hspace{2cm} \text{Conquer}
7: \(t \leftarrow \) number of times \(x \) appear \(A \)
8: return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Quicksort

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x \ Divide
4: $A_R \leftarrow$ elements in A that are greater than x \ Divide
5: $B_L \leftarrow$ quicksort(A_L, A_L.size) \ Conquer
6: $B_R \leftarrow$ quicksort(A_R, A_R.size) \ Conquer
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

\triangleright Recurrence $T(n) \leq 2T(n/2) + O(n)$
Quicksort

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \(\|\) Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \(\|\) Divide
5: \(B_L \leftarrow\) quicksort\((A_L, A_L.size)\) \hspace{1cm} \(\|\) Conquer
6: \(B_R \leftarrow\) quicksort\((A_R, A_R.size)\) \hspace{1cm} \(\|\) Conquer
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1: if n ≤ 1 then return A
2: x ← a random element of A (x is called a pivot)
3: AL ← elements in A that are less than x
 \| Divide
4: AR ← elements in A that are greater than x
 \| Divide
5: BL ← quicksort(AL, AL.size)
 \| Conquer
6: BR ← quicksort(AR, AR.size)
 \| Conquer
7: t ← number of times x appear A
8: return the array obtained by concatenating BL, the array containing t copies of x, and BR
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow \) a random element of \(A\) (\(x\) is called a pivot)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \text{divide}
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \text{divide}
5: \(B_L \leftarrow\) quicksort\((A_L, A_L\text{.size})\) \hspace{1cm} \text{conquer}
6: \(B_R \leftarrow\) quicksort\((A_R, A_R\text{.size})\) \hspace{1cm} \text{conquer}
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

Lemma The expected running time of the algorithm is \(O(n \lg n)\).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccccc}
64 & 82 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[64 \quad 82 \quad 75 \quad 29 \quad 38 \quad 45 \quad 94 \quad 69 \quad 25 \quad 76 \quad 15 \quad 92 \quad 37 \quad 17 \quad 85 \]
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

▶ In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

```
17 64 75 29 38 45 94 69 25 76 15 92 37 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[\begin{array}{cccccccccccccccc}
17 & 37 & 64 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 75 & 82 & 85 \\
\end{array}\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

![Diagram of partitioning an array with pointers i and j.]

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 64 & 92 & 75 & 82 & 85 \\
\end{array}
\]
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

17 37 15 29 38 45 64 69 25 76 94 92 75 82 85

i j
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

![Array Partitioning](image)

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

![Array with elements 17, 37, 15, 29, 38, 45, 25, 64, 69, 76, 94, 92, 75, 82, 85 with indices i and j indicated.]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell$, $j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m ← partition(A, ℓ, r)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)

▶ To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

![Diagram of arrays being merged](image-url)
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29 32 48
Outline

Divide-and-Conquer

Counting Inversions

QuickSort and Selection
 QuickSort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?
Question

Q: Can we do better than $O(n \log n)$ for sorting?

Answer

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements.
- We can not use “internal structures” of the elements.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.

You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1?\quad x \leq 2?\quad x = 3?$

1 2 3 4
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

<table>
<thead>
<tr>
<th>$x = 1?$</th>
<th>$x \leq 2?$</th>
<th>$x = 3?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

$\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in $\pi"?"
Comparison-Based Sorting Algorithms

<table>
<thead>
<tr>
<th>Q: Can we do better than $O(n \log n)$ for sorting?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: No, for comparison-based sorting algorithms.</td>
</tr>
</tbody>
</table>

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

<table>
<thead>
<tr>
<th>Q: How many questions do you need to ask in order to get the permutation π?</th>
</tr>
</thead>
</table>
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \lg n)$
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

Sorting solves the problem in time $O(n \lg n)$.

Our goal: $O(n)$ running time
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$
Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(A, n)

1: **if** n ≤ 1 **then return** A
2: x ← lower median of A
3: AL ← elements in A that are less than x ▷ Divide
4: AR ← elements in A that are greater than x ▷ Divide
5: BL ← quicksort(AL, AL.size) ▷ Conquer
6: BR ← quicksort(AR, AR.size) ▷ Conquer
7: t ← number of times x appear A
8: **return** the array obtained by concatenating BL, the array containing t copies of x, and BR
Selection Algorithm with Median Finder

selection(\(A, n, i\))

1: \textbf{if} \(n = 1\) \textbf{then return} \(A\)
2: \(x \leftarrow\) lower median of \(A\)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \hspace{1cm} \triangleright \text{Divide}
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \hspace{1cm} \triangleright \text{Divide}
5: \textbf{if} \(i \leq A_L.\text{size}\) \textbf{then}
6: \quad \textbf{return} \ selection(\(A_L, A_L.\text{size}, i\)) \hspace{1cm} \triangleright \text{Conquer}
7: \quad \textbf{else if} \(i > n - A_R.\text{size}\) \textbf{then}
8: \quad \quad \textbf{return} \ selection(\(A_R, A_R.\text{size}, i - (n - A_R.\text{size})\)) \hspace{1cm} \triangleright \text{Conquer}
9: \quad \textbf{else}
10: \quad \quad \textbf{return} \(x\)
Selection Algorithm with Median Finder

selection(*A*, *n*, *i*)

1. **if** *n* = 1 **then** return *A*
2. \(x \leftarrow\) lower median of *A*
3. \(A_L \leftarrow\) elements in *A* that are less than *x\) \(\triangleright\) Divide
4. \(A_R \leftarrow\) elements in *A* that are greater than *x\) \(\triangleright\) Divide
5. **if** *i* \(\leq\) \(A_L\).size **then**
6. **return** \(\text{selection}(A_L, A_L\text{.size}, i)\) \(\triangleright\) Conquer
7. **else if** *i* \(>\) \(n - A_R\).size **then**
8. **return** \(\text{selection}(A_R, A_R\text{.size}, i - (n - A_R\text{.size}))\) \(\triangleright\) Conquer
9. **else**
10. **return** *x*

\(\triangleright\) Recurrence for selection: \(T(n) = T(n/2) + O(n)\)
Selection Algorithm with Median Finder

\textbf{selection}(A, n, i)

1: \textbf{if} \ n = 1 \ \textbf{then return} \ A
2: \ x \leftarrow \text{lower median of} \ A
3: \ A_L \leftarrow \text{elements in} \ A \ 	ext{that are less than} \ x \quad \triangleright \text{Divide}
4: \ A_R \leftarrow \text{elements in} \ A \ 	ext{that are greater than} \ x \quad \triangleright \text{Divide}
5: \textbf{if} \ i \leq A_L.\text{size} \ \textbf{then}
6: \quad \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \text{Conquer}
7: \textbf{else if} \ i > n - A_R.\text{size} \ \textbf{then}
8: \quad \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \text{Conquer}
9: \textbf{else}
10: \quad \textbf{return} \ x

\triangleright \text{Recurrence for selection:} \ T(n) = T(n/2) + O(n)
\triangleright \text{Solving recurrence:} \ T(n) = O(n)
Randomized Selection Algorithm

\textbf{selection}(A, n, i)

1: \textbf{if} \ n = 1 \ \textbf{then} \textbf{return} \ A
2: \ x \leftarrow \ \text{random element of} \ A \ (\text{called pivot})
3: \ A_L \leftarrow \ \text{elements in} \ A \text{ that are less than} \ x \quad \triangleright \text{Divide}
4: \ A_R \leftarrow \ \text{elements in} \ A \text{ that are greater than} \ x \quad \triangleright \text{Divide}
5: \ \textbf{if} \ i \leq A_L.\text{size} \ \textbf{then}
6: \quad \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \text{Conquer}
7: \ \textbf{else if} \ i > n - A_R.\text{size} \ \textbf{then}
8: \quad \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \text{Conquer}
9: \ \textbf{else}
10: \quad \textbf{return} \ x
Randomized Selection Algorithm

\texttt{selection}(A, n, i)

1: if \(n = 1 \) then return \(A \)
2: \(x \leftarrow \) random element of \(A \) (called pivot)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hfill \text{divide}
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hfill \text{divide}
5: if \(i \leq A_L.\text{size} \) then
6: return \(\text{selection}(A_L, A_L.\text{size}, i) \) \hfill \text{conquer}
7: else if \(i > n - A_R.\text{size} \) then
8: return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \hfill \text{conquer}
9: else
10: return \(x \)

\textbf{expected running time} = \(O(n) \)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Polynomial Multiplication

<table>
<thead>
<tr>
<th>Input:</th>
<th>two polynomials of degree $n - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>product of two polynomials</td>
</tr>
</tbody>
</table>
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]

\[
= 6x^6 - 9x^5 + 18x^4 - 15x^3
+ 4x^5 - 6x^4 + 12x^3 - 10x^2
- 10x^4 + 15x^3 - 30x^2 + 25x
+ 8x^3 - 12x^2 + 24x - 20
\]

\[
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

Input: $(4, -5, 2, 3), (-5, 6, -3, 2)$

Output: $(-20, 49, -52, 20, 2, -5, 6)$
polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: \hspace{1em} for $j \leftarrow 0$ to $n - 1$ do
4: \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Naïve Algorithm

\[\text{polynomial-multiplication}(A, B, n) \]

1: let \[C[k] \leftarrow 0 \] for every \(k = 0, 1, 2, \ldots, 2n - 2 \)
2: for \(i \leftarrow 0 \) to \(n - 1 \) do
3: for \(j \leftarrow 0 \) to \(n - 1 \) do
4: \[C[i + j] \leftarrow C[i + j] + A[i] \times B[j] \]
5: return \(C \)

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \[p(x) \]: degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

▶ \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
▶ \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
▶ \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} + \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \\
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \\
+ multiply(p_L, q_L)
\]

▶ Recurrence: \(T(n) = 4T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

▶ Recurrence: \(T(n) = 4T(n/2) + O(n) \)
▶ \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[
pq = \left(\frac{pH}{2} + pL \right) \left(\frac{qH}{2} + qL \right) = pHqH \cdot n + \left(pHqL + pLqH \right) \cdot \frac{n}{2} + pLqL
\]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
\]
\[
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
\Rightarrow p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
\[\text{multiply}(p, q) = r_H \times x^n + \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} + r_L \]

Solving Recurrence:
\[T(n) = 3T(n/2) + O(n) \]
\[T(n) = O(n \log_2 3) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[
\begin{align*}
r_H &= \text{multiply}(p_H, q_H) \\
r_L &= \text{multiply}(p_L, q_L)
\end{align*}
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]
\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
multiply(p, q) = r_H \times x^n
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2}
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L
\]

Solving Recurrence:

\[T(n) = 3T(n/2) + O(n) \]
\[T(n) = O(n^{\lg_2 3}) = O(n^{1.585}) \]
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
\text{multiply}(A, B, n)
\]

1: if \(n = 1 \) then return \((A[0]B[0])\)
2: \(A_L \leftarrow A[0 \ldots n/2 - 1], A_H \leftarrow A[n/2 \ldots n - 1] \)
3: \(B_L \leftarrow B[0 \ldots n/2 - 1], B_H \leftarrow B[n/2 \ldots n - 1] \)
4: \(C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \)
5: \(C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \)
6: \(C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \)
7: \(C \leftarrow \text{array of } (2n - 1) \text{ 0's} \)
8: for \(i \leftarrow 0 \) to \(n - 2 \) do
9: \(C[i] \leftarrow C[i] + C_L[i] \)
10: \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11: \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12: return \(C \)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest

- Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.
- **Conquer**: Solve two sub-instances recursively.
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider $O(1)$ boxes nearby

time for combine = $O(n)$ (many technicalities omitted)

Recurrence: $T(n) = 2T(n/2) + O(n)$

Running time: $O(n \log n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. **for** $i \leftarrow 1$ to n **do**
2. \hspace{1em} **for** $j \leftarrow 1$ to n **do**
3. \hspace{2em} $C[i, j] \leftarrow 0$
4. \hspace{1em} **for** $k \leftarrow 1$ to n **do**
5. \hspace{2em} $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. **return** C

▷ running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\quad \quad
B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}\]

- \text{matrix multiplication}(A, B) recursively calls \text{matrix multiplication}(A_{11}, B_{11}), \text{matrix multiplication}(A_{12}, B_{21}), \ldots
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\quad n/2
\quad n/2
\]

\[
B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\quad n/2
\quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

matrix_multiplication(A, B) recursively calls
matrix_multiplication(A_{11}, B_{11}),
matrix_multiplication(A_{12}, B_{21}),
\ldots

\[
T(n) = 8T(n/2) + O(n^2)
\]

\[
T(n) = O(n^3)
\]
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- $T(n) = 2T(n/2) + O(n)$
Recursion-Tree Method

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \]

- Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
- Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels

Running time = \(O(n \log n) \)
Recursion-Tree Method

\[T(n) = 2T(n/2) + O(n) \]

Each level takes running time \(O(n) \)

There are \(O(\lg n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

\[n \]

\[\frac{n}{2} \quad \frac{n}{2} \quad \frac{n}{2} \]

\[\frac{n}{4} \quad \frac{n}{4} \]
Recursion-Tree Method

\[
T(n) = 3T\left(\frac{n}{2}\right) + O(n)
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)?
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

\[
\begin{array}{c}
\text{Total running time at level } i? \quad \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n
\end{array}
\]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

- Total running time at level \(i \)?
 \[\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \]
- Index of last level?
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]

\[\text{Total running time at level } i? \quad \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \]

\[\text{Index of last level? } \lg_2 n \]

\[\text{Total running time?} \]
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

- Total running time at level i?
 \[\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \]

- Index of last level?
 \[\lg_2 n \]

- Total running time?
 \[
 \sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
 \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]

- Total running time at level \(i \)?

\[\sum_{i=0}^{\log_2 n} (\frac{3}{4})^i n^2 = O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level i: \((n/2)^2 \times 3^i = (3^i) / 4^i n^2\)

- Index of last level: $\log_2 n$
Recursion-Tree Method

- \(T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)

- Index of last level? \(\lg_2 n \)

- Total running time?
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]

\[\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = \quad \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\log_2 n \)

- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1, b > 1, c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
\text{??} & \text{if } c = \lg_b a \\
\text{??} & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
\[T(n) = aT(n/b) + O(n^c), \]
where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1, b > 1, c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}$$
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$

▶ Ex: $T(n) = 4T(n/2) + O(n^2)$. Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

▶ **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). **Case 2.**
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \log n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

▶ Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). **Which Case?**
Theorem \[T(n) = aT(n/b) + O(n^c), \] where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

▶ Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)

▶ Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lceil \lg_b a \rceil}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[n^c \]

\[\begin{array}{c}
1 \text{ node} \\
\hline
\text{a nodes} \\
\hline
\text{a}^2 \text{ nodes} \\
\hline
\text{a}^3 \text{ nodes} \\
\hline
\end{array} \]

\[\begin{array}{c}
\text{a nodes} \\
\hline
\text{a}^2 \text{ nodes} \\
\hline
\text{a}^3 \text{ nodes} \\
\hline
\end{array} \]

\[\begin{array}{c}
\text{1 node} \\
\hline
\text{a nodes} \\
\hline
\text{a}^2 \text{ nodes} \\
\hline
\text{a}^3 \text{ nodes} \\
\hline
\end{array} \]

\[\begin{array}{cccc}
\text{1 node} & \text{a nodes} & \text{a}^2 \text{ nodes} & \text{a}^3 \text{ nodes} \\
\hline
\text{1 node} & \text{a nodes} & \text{a}^2 \text{ nodes} & \text{a}^3 \text{ nodes} \\
\hline
\text{1 node} & \text{a nodes} & \text{a}^2 \text{ nodes} & \text{a}^3 \text{ nodes} \\
\hline
\text{1 node} & \text{a nodes} & \text{a}^2 \text{ nodes} & \text{a}^3 \text{ nodes} \\
\hline
\end{array} \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

1 node

\[(n/b)^c \]

\[(n/b)^c \]

\[(n/b)^c \]

\[(n/b)^c \]

\[n^c \]

\[n^c \]

\[\frac{a}{b^c}n^c \]

\[\left(\frac{a}{b^c}\right)^2 n^c \]

\[\left(\frac{a}{b^c}\right)^3 n^c \]

\[(n/b^3)^c \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

\[
\begin{array}{c}
\text{1 node} \\
\text{a nodes} \\
\text{a}^2 \text{ nodes} \\
\text{a}^3 \text{ nodes}
\end{array}
\]

\[
\begin{array}{c}
(n/b)^c \\
(n/b^2)^c \\
(n/b^3)^c \\
\vdots
\end{array}
\]

\[
\begin{array}{c}
\frac{a}{b^c}n^c \\
\frac{a}{b^c}n^c \\
\frac{a}{b^c}n^c \\
\vdots
\end{array}
\]

\[c < \lg_b a : \text{ bottom-level dominates: } \left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

1 node

\[n^c \]

a nodes

\[(n/b)^c \]

\[\frac{a}{b^c}n^c \]

a^2 nodes

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(a/b^c)^2 n^c \]

a^3 nodes

\[\frac{n}{b^3}^c \]

\[(a/b^c)^3 n^c \]

- \(c < \lg_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \(c = \lg_b a \): all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

\[\begin{array}{c}
\text{1 node} & n^c & n^c \\
\text{a nodes} & (n/b)^c & (n/b)^c \\
\text{a}^2 \text{ nodes} & (n/b^2)^c & (n/b^2)^c \\
\text{a}^3 \text{ nodes} & \frac{n}{b^3}^c & \frac{n}{b^3}^c & \frac{n}{b^3}^c & \frac{n}{b^3}^c \\
& \cdots & \cdots & \cdots & \cdots \\
\end{array} \]

- \(c < \lg_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \(c = \lg_b a \): all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
- \(c > \lg_b a \): top-level dominates: \(O(n^c) \)
Outline

Divide-and-Conquer

Counting Inversions

Quicksort and Selection
 Quicksort
 Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

Polynomial Multiplication

Other Classic Algorithms using Divide-and-Conquer

Solving Recurrences

Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

\(n \)-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n : Stupid Divide-and-Conquer Algorithm

\[
\text{Fib}(n) \]

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: **for** $i \leftarrow 2$ **to** n **do**
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: **return** $F[n]$

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\ldots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(\(n\))

1: if \(n = 0\) then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

2: \(R \leftarrow power(\lfloor n/2 \rfloor)\)

3: \(R \leftarrow R \times R\)

4: if \(n\) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\)

5: return \(R\)

Fib(\(n\))

1: if \(n = 0\) then return 0

2: \(M \leftarrow power(n - 1)\)

3: return \(M[1][1]\)
power(*n*)

1: if *n* = 0 then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

2: \(R \leftarrow \text{power}([n/2])\)

3: \(R \leftarrow R \times R\)

4: if *n* is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\)

5: return \(R\)

Fib(*n*)

1: if *n* = 0 then return 0

2: \(M \leftarrow \text{power}(n - 1)\)

3: return \(M[1][1]\)

▶ Recurrence for running time?
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2: $R \leftarrow \text{power}([n/2])$

3: $R \leftarrow R \times R$

4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

Fib(n)

1: if $n = 0$ then return 0

2: $M \leftarrow \text{power}(n - 1)$

3: return $M[1][1]$

Recurrence for running time? $T(n) = T(n/2) + O(1)$
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

▶ We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
▶ Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers
Running time $= O(lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time = \(O(\lg n)\): We Cheated!

Q: How many bits do we need to represent \(F(n)\)?

A: \(\Theta(n)\)

- We cannot add (or multiply) two integers of \(\Theta(n)\) bits in \(O(1)\) time.
- Even printing \(F(n)\) requires time much larger than \(O(\lg n)\).
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(lg n)$.

Fixing the Problem

To compute F_n, we need $O(lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
Summary: Divide-and-Conquer

▶ **Divide**: Divide instance into many smaller instances
▶ **Conquer**: Solve each of smaller instances recursively and separately
▶ **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
▶ Write down recurrence for running time
▶ Solve recurrence using master theorem
Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, ⋯:

\[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, …:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time