Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort($A$, $n$)

1: if $n = 1$ then
2: return $A$
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
merge-sort($A, n$)

1: if $n = 1$ then
2: return $A$
3: else
4: $B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5: $C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

Each level takes running time $O(n)$

There are $O(\lg n)$ levels

Running time $= O(n \lg n)$

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

Even simpler:

\[
T(n) = 2T(n/2) + O(n)
\]

(Implicit assumption: $T(n) = O(1)$ if $n$ is at most some constant.)

Solving this recurrence, we have

\[
T(n) = O(n \log n)
\]

(we shall show how later)
Running Time for Merge-Sort Using Recurrence

- \( T(n) = \) running time for sorting \( n \) numbers, then

\[
T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
T([n/2]) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2 
\end{cases}
\]

- Even simpler: \( T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \( T(n) = O(1) \) if \( n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- \( T(n) = \) running time for sorting \( n \) numbers, then
  \[
  T(n) = \begin{cases} 
  O(1) & \text{if } n = 1 \\
  T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 
  \end{cases}
  \]

- With some tolerance of informality:
  \[
  T(n) = \begin{cases} 
  O(1) & \text{if } n = 1 \\
  2T(n/2) + O(n) & \text{if } n \geq 2 
  \end{cases}
  \]

- Even simpler: \( T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \( T(n) = O(1) \) if \( n \) is at most some constant.)

- Solving this recurrence, we have \( T(n) = O(n \lg n) \) (we shall show how later)
Def. Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.

**Counting Inversions**

**Input:** an sequence $A$ of $n$ numbers  
**Output:** number of inversions in $A$
**Def.** Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.

**Counting Inversions**

**Input:** an sequence $A$ of $n$ numbers

**Output:** number of inversions in $A$

**Example:**

| 10 | 8 | 15 | 9 | 12 |
Def. Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

**Input:** an sequence $A$ of $n$ numbers

**Output:** number of inversions in $A$

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.

**Counting Inversions**

**Input:** an sequence $A$ of $n$ numbers  
**Output:** number of inversions in $A$

**Example:**

```
10  8  15  9  12  
8   9  10  12  15  
```

4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array $A$ of $n$ integers, an inversion in $A$ is a pair $(i, j)$ of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

**Input:** an sequence $A$ of $n$ numbers

**Output:** number of inversions in $A$

Example:

10 -- 8 -- 15 -- 9 -- 12
8 -- 9 -- 10 -- 12 -- 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
Naive Algorithm for Counting Inversions

count-inversions($A, n$)

1: $c \leftarrow 0$
2: for every $i \leftarrow 1$ to $n - 1$ do
3:     for every $j \leftarrow i + 1$ to $n$ do
4:         if $A[i] > A[j]$ then $c \leftarrow c + 1$
5: return $c$
Divide-and-Conquer

- $p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
- $m = \left| \left\{ (i, j) : B[i] > C[j] \right\} \right|$

Q: How fast can we compute $m$, via trivial algorithm?

A: $O(n^2)$

- Can not improve the $O(n^2)$ time for counting inversions.
Divide-and-Conquer

- $p = \lfloor n/2 \rfloor$, $B = A[1..p]$, $C = A[p+1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
  \[ m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

**Lemma** If both $B$ and $C$ are sorted, then we can compute $m$ in $O(n)$ time!
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

$C$: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$\text{total} = 0$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

total = 0
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$: $\text{total} = 0$

$B: \begin{array}{ccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{ccccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$+0$

$3$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between \( B \) and \( C \)

Count pairs \( i, j \) such that \( B[i] > C[j] \):

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\end{align*}
\]

\[\text{total} = 0\]
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48  

$C$: 5 7 9 25 29

$+0$

$3 \ 5$

$\text{total} = 0$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]:$

$B:$ 3 8 12 20 32 48

$C:$ 5 7 9 25 29

$+0$

$3 5 7$

$\text{total} = 0$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$\text{total} = 0$

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$+0$

$B$: 3
colored red

$C$: 5 7

colored yellow

Total: 0
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8

$+0 +2$

$\text{total} = 2$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$\text{total} = 2$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

+0 +2

$\text{total} = 2$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48  

$C$: 5 7 9 25 29  

$\text{total} = 2$

$B$: $+$0 $+$2

$C$: 3 5 7 8 9

total= 2
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>+2</td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total = 5
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$: $\text{total} = 5$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$\text{total} = 8$

$B$: 3 5 7 8 9 12 20

$C$: +0 +2 +3 +3

3 5 7 8 9 12 20
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

Total: 8
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$: 

$B$: 3 8 12 20 32 48 

$C$: 5 7 9 25 29 

\[\begin{array}{cccc}
3 & 5 & 7 & 8 \\
9 & 12 & 20 & 25
\end{array}\]

\[\begin{array}{cccc}
+0 & +2 & +3 & +3
\end{array}\]

\[\text{total} = 8\]
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$\text{total} = 8$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$: 

$B$: $\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array}$

$C$: $\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array}$

total $= 8$

$\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array}$

$\begin{array}{cccccc} 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \end{array}$

$+0 +2 +3 +3$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>$B$</th>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C$</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

$$\text{total} = 8$$

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
+0 & +2 & +3 & +3 & & & & & \\
\end{array}
\]
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$: 

$B$: 

3 8 12 20 32 48 

$C$: 

5 7 9 25 29

+0 +2 +3 +3 +5

3 5 7 8 9 12 20 25 29 32

total$\,\,=\,13$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:  

$B$: 3 8 12 20 32 48  

$C$: 5 7 9 25 29  

Total = 13
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$B$: 3 8 12 20 32 48

$C$: 5 7 9 25 29

$+0 +2 +3 +3 +5 +5$

$B$: 3 5 7 8 9 12 20 25 29 32 48

$C$: 5 7 9 25 29

$\text{total} = 18$
Counting Inversions between $B$ and $C$

Count pairs $i, j$ such that $B[i] > C[j]$:

$B$: \[ 3 \ 8 \ 12 \ 20 \ 32 \ 48 \]

$C$: \[ 5 \ 7 \ 9 \ 25 \ 29 \]

\[ \begin{array}{c c c c c c}
+0 & +2 & +3 & +3 & +5 & +5 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array} \]

Total: \[ 18 \]
Count Inversions between $B$ and $C$

- Procedure that merges $B$ and $C$ and counts inversions between $B$ and $C$ at the same time

**merge-and-count**($B, C, n_1, n_2$)

1: $\text{count} \leftarrow 0$
2: $A \leftarrow \text{array of size } n_1 + n_2$; $i \leftarrow 1$; $j \leftarrow 1$
3: \textbf{while} $i \leq n_1$ or $j \leq n_2$ \textbf{do}
4: \hspace{1em} \textbf{if} $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) \textbf{then}
5: \hspace{2em} $A[i + j - 1] \leftarrow B[i]$; $i \leftarrow i + 1$
6: \hspace{2em} $\text{count} \leftarrow \text{count} + (j - 1)$
7: \hspace{1em} \textbf{else}
8: \hspace{2em} $A[i + j - 1] \leftarrow C[j]$; $j \leftarrow j + 1$
9: \textbf{return} ($A, \text{count}$)
A procedure that returns the sorted array of $A$ and counts the number of inversions in $A$:

**sort-and-count**($A, n$)

1: if $n = 1$ then
2: \[ \text{return } (A, 0) \]
3: else
4: \[(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)\]
5: \[(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)\]
6: \[(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\]
7: \[\text{return } (A, m_1 + m_2 + m_3)\]
A procedure that returns the sorted array of $A$ and counts the number of inversions in $A$:

\[
\text{sort-and-count}(A, n) \quad \text{Divide: trivial}
\]

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5: $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7: return $(A, m_1 + m_2 + m_3)$

Conquer: 4, 5
Combine: 6, 7
sort-and-count\((A, n)\)

1: if \(n = 1\) then
2: \hspace{1em} \textbf{return} \((A, 0)\)
3: \hspace{1em} \textbf{else}
4: \hspace{2em} \((B, m_1) \leftarrow \text{sort-and-count}\(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\))
5: \hspace{2em} \((C, m_2) \leftarrow \text{sort-and-count}\(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\))
6: \hspace{2em} \((A, m_3) \leftarrow \text{merge-and-count}\(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil\))
7: \hspace{1em} \textbf{return} \((A, m_1 + m_2 + m_3)\)

• Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
sort-and-count($A, n$)

1: if $n = 1$ then
2: return ($A, 0$)
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return ($A, m_1 + m_2 + m_3$)

Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$

Running time = $O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Recurse</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
</tbody>
</table>

- **Merge Sort** uses Trivial for Divide and Conquer, and Merge 2 sorted arrays for Combine.
- **Quicksort** uses Separate small and big numbers for Divide, Recurse for Conquer, and Trivial for Combine.
Quicksort Example

Assumption We can choose median of an array of size $n$ in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Example

**Assumption**  We can choose median of an array of size $n$ in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption  We can choose median of an array of size $n$ in $O(n)$ time.

29  82  75  64  38  45  94  69  25  76  15  92  37  17  85

29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
**Assumption**  We can choose median of an array of size $n$ in $O(n)$ time.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>85</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
</tr>
<tr>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Assumption**  We can choose median of an array of size $n$ in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
**Quicksort**

\[\text{quicksort}(A, n)\]

1. \textbf{if} \( n \leq 1 \) \textbf{then return} \( A \)
2. \( x \leftarrow \) lower median of \( A \)
3. \( A_L \leftarrow \) array of elements in \( A \) that are less than \( x \) \text{ \textbackslash Divide}
4. \( A_R \leftarrow \) array of elements in \( A \) that are greater than \( x \) \text{ \textbackslash Divide}
5. \( B_L \leftarrow \text{quicksort}(A_L, \text{length of } A_L) \) \text{ \textbackslash Conquer}
6. \( B_R \leftarrow \text{quicksort}(A_R, \text{length of } A_R) \) \text{ \textbackslash Conquer}
7. \( t \leftarrow \) number of times \( x \) appear \( A \)
8. \textbf{return} concatenation of \( B_L \), \( t \) copies of \( x \), and \( B_R \)
Quicksort

quicksort(A, n)

1: \textbf{if} \ n \leq 1 \ \textbf{then return} \ A
2: \ x \leftarrow \text{lower median of} \ A
3: \ A_L \leftarrow \text{array of elements in} \ A \ \text{that are less than} \ x \ \ \ \ \ \text{Divide}
4: \ A_R \leftarrow \text{array of elements in} \ A \ \text{that are greater than} \ x \ \ \ \ \ \text{Divide}
5: \ B_L \leftarrow \text{quicksort}(A_L, \text{length of} \ A_L) \ \ \ \ \ \text{Conquer}
6: \ B_R \leftarrow \text{quicksort}(A_R, \text{length of} \ A_R) \ \ \ \ \ \text{Conquer}
7: \ t \leftarrow \text{number of times} \ x \ \text{appear} \ A
8: \ \textbf{return} \ \text{concatenation of} \ B_L, \ t \ \text{copies of} \ x, \ \text{and} \ B_R

\textbullet \ \text{Recurrence} \ T(n) \leq 2T(n/2) + O(n)
Quicksort

quicksort\( (A, n) \)

1: \textbf{if} \( n \leq 1 \) \textbf{then return} \( A \)
2: \( x \leftarrow \) lower median of \( A \)
3: \( A_L \leftarrow \) array of elements in \( A \) that are less than \( x \) \hspace{1cm} \|\| \text{Divide}
4: \( A_R \leftarrow \) array of elements in \( A \) that are greater than \( x \)  \hspace{1cm} \|\| \text{Divide}
5: \( B_L \leftarrow \) quicksort\( (A_L, \text{length of } A_L) \) \hspace{1cm} \|\| \text{Conquer}
6: \( B_R \leftarrow \) quicksort\( (A_R, \text{length of } A_R) \) \hspace{1cm} \|\| \text{Conquer}
7: \( t \leftarrow \) number of times \( x \) appear \( A \)
8: \textbf{return} concatenation of \( B_L \), \( t \) copies of \( x \), and \( B_R \)

- Recurrence \( T(n) \leq 2T(n/2) + O(n) \)
- Running time = \( O(n \lg n) \)
Assumption: We can choose median of an array of size $n$ in $O(n)$ time.

Q: How to remove this assumption?

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical).

2. Choose a pivot randomly and pretend it is the median (it is practical).
Assumption  We can choose median of an array of size $n$ in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
**Assumption**  We can choose median of an array of size $n$ in $O(n)$ time.

**Q:** How to remove this assumption?

**A:**

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A ($x$ is called a pivot)
3: $A_L \leftarrow$ array of elements in A that are less than $x$  \div 
4: $A_R \leftarrow$ array of elements in A that are greater than $x$  \div 
5: $B_L \leftarrow$ quicksort($A_L$, length of $A_L$)  \conc
6: $B_R \leftarrow$ quicksort($A_R$, length of $A_R$)  \conc
7: $t \leftarrow$ number of times $x$ appear A
8: return concatenation of $B_L$, $t$ copies of $x$, and $B_R$
Assumption: There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer program is deterministic!

In practice: use pseudo-random generators, deterministic algorithms returning numbers that "look like" random.

In theory: assume they can.
Randomized Algorithm Model

**Assumption**  There is a procedure to produce a random real number in $[0, 1]$.

**Q:** Can computers really produce random numbers?

**A:** No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption  There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

**Assumption**  There is a procedure to produce a random real number in $[0, 1]$. 

**Q:** Can computers really produce random numbers? 

**A:** No! The execution of a computer programs is deterministic! 

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random. 
- In theory: assume they can.
Quicksort Using A Random Pivot

\[
\text{quicksort}(A, n)
\]

1. \textbf{if } \, n \leq 1 \, \textbf{then return } A
2. \, \, x \leftarrow \text{a random element of } A \, (x \text{ is called a pivot})
3. \, A_L \leftarrow \text{array of elements in } A \text{ that are less than } x
4. \, A_R \leftarrow \text{array of elements in } A \text{ that are greater than } x
5. \, B_L \leftarrow \text{quicksort}(A_L, \text{length of } A_L) \quad \text{| Divide}
6. \, B_R \leftarrow \text{quicksort}(A_R, \text{length of } A_R) \quad \text{| Divide}
7. \, t \leftarrow \text{number of times } x \text{ appear } A
8. \, \text{return concatenation of } B_L, \, t \text{ copies of } x, \text{ and } B_R \quad \text{| Conquer}

\textbf{Lemma} \, \text{The expected running time of the algorithm is } O(n \lg n).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
i  64  82  75  29  38  45  94  69  25  76  15  92  37  17  85
j
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>37</td>
<td>75</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1)\) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

```
17  37  15  29  38  45  25  64  69  76  94  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.
\textbf{partition}(A, \ell, r)

1: \( p \leftarrow \text{random integer between } \ell \text{ and } r \), swap \( A[p] \) and \( A[\ell] \)
2: \( i \leftarrow \ell, j \leftarrow r \)
3: \textbf{while true do}
4: \quad \text{while } i < j \text{ and } A[i] < A[j] \text{ do } j \leftarrow j - 1 \)
5: \quad \textbf{if } i = j \text{ then break}
6: \quad \text{swap } A[i] \text{ and } A[j]; \ i \leftarrow i + 1 \)
7: \quad \textbf{while } i < j \text{ and } A[i] < A[j] \text{ do } i \leftarrow i + 1 \)
8: \quad \textbf{if } i = j \text{ then break}
9: \quad \text{swap } A[i] \text{ and } A[j]; \ j \leftarrow j - 1 \)
10: \textbf{return } i
In-Place Implementation of Quick-Sort

```plaintext
quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: m ← partition(A, ℓ, r)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)
```

To sort an array $A$ of size $n$, call quicksort($A$, 1, $n$).

**Note:** We pass the array $A$ by reference, instead of by copying.
**Merge-Sort is Not In-Place**

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{c}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{c}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8 12 20 32 48
5  7  9 25 29
3  5  7  8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}
\]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma  The (worst-case) running time of any comparison-based sorting algorithm is \(\Omega(n \lg n)\).
**Lemma**  The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number $x$ in his hand, $x \in \{1, 2, 3, \cdots, N\}$. 

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 1?$</td>
<td>1</td>
</tr>
<tr>
<td>$x \leq 2?$</td>
<td>1, 2</td>
</tr>
<tr>
<td>$x = 3?$</td>
<td>3</td>
</tr>
</tbody>
</table>

Q: How many questions do you need to ask Bob in order to know $x$?

A: $\lceil \log_2 N \rceil$. 
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number $x$ in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about $x$. 
Lemma  The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number $x$ in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about $x$.

Q: How many questions do you need to ask Bob in order to know $x$?
**Lemma**  The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number $x$ in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about $x$.

**Q:** How many questions do you need to ask Bob in order to know $x$?

**A:** $[\log_2 N]$. 

$x = 1? \quad x \leq 2? \quad x = 3?$
Lemma  The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number $x$ in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about $x$.

Q: How many questions do you need to ask Bob in order to know $x$?

A: $\lceil \log_2 N \rceil$.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about $\pi$. 

$\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about $\pi$.

Q: How many questions do you need to ask in order to get the permutation $\pi$?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about $\pi$.

Q: How many questions do you need to ask in order to get the permutation $\pi$?

A: $\log_2 n! = \Theta(n \lg n)$
**Q:** Can we do better than $O(n \log n)$ for sorting?

**A:** No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over \{1, 2, 3, $\cdots$, $n$\} in his hand.
- You can ask Bob questions of the form “does $i$ appear before $j$ in $\pi$?”

**Q:** How many questions do you need to ask in order to get the permutation $\pi$?

**A:** At least $\log_2 n! = \Theta(n \log n)$.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does $i$ appear before $j$ in $\pi$?”

Q: How many questions do you need to ask in order to get the permutation $\pi$?

A: At least $\log_2 n! = \Theta(n \log n)$.
**Comparison-Based Sorting Algorithms**

**Q:** Can we do better than $O(n \log n)$ for sorting?

**A:** No, for comparison-based sorting algorithms.

- Bob has a permutation $\pi$ over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form “does $i$ appear before $j$ in $\pi$?”

**Q:** How many questions do you need to ask in order to get the permutation $\pi$?

**A:** At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Selection Problem

**Input:** a set $A$ of $n$ numbers, and $1 \leq i \leq n$

**Output:** the $i$-th smallest number in $A$
Selection Problem

Input: a set $A$ of $n$ numbers, and $1 \leq i \leq n$

Output: the $i$-th smallest number in $A$

- Sorting solves the problem in time $O(n \log n)$. 
Selection Problem

**Input:** a set $A$ of $n$ numbers, and $1 \leq i \leq n$

**Output:** the $i$-th smallest number in $A$

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1: if \( n \leq 1 \) then return \( A \)

2: \( x \leftarrow \) lower median of \( A \)

3: \( A_L \leftarrow \) elements in \( A \) that are less than \( x \)  ▷ Divide

4: \( A_R \leftarrow \) elements in \( A \) that are greater than \( x \)  ▷ Divide

5: \( B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\)  ▷ Conquer

6: \( B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\)  ▷ Conquer

7: \( t \leftarrow \) number of times \( x \) appear \( A \)

8: return the array obtained by concatenating \( B_L \), the array containing \( t \) copies of \( x \), and \( B_R \)
Selection Algorithm with Median Finder

\[
\text{selection}(A, n, i)
\]

1. \textbf{if} \( n = 1 \) \textbf{then} return \( A \)
2. \( x \leftarrow \) lower median of \( A \)
3. \( A_L \leftarrow \) elements in \( A \) that are less than \( x \) \hspace{1cm} \triangleright \text{Divide}
4. \( A_R \leftarrow \) elements in \( A \) that are greater than \( x \) \hspace{1cm} \triangleright \text{Divide}
5. \textbf{if} \( i \leq A_L.\text{size} \) \textbf{then}
6. \hspace{1cm} return \text{selection}(A_L, A_L.\text{size}, i) \hspace{1cm} \triangleright \text{Conquer}
7. \textbf{else if} \( i > n - A_R.\text{size} \) \textbf{then}
8. \hspace{1cm} return \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \hspace{1cm} \triangleright \text{Conquer}
9. \textbf{else}
10. \hspace{1cm} return \( x \)
Selection Algorithm with Median Finder

\[
\text{selection}(A, n, i)
\]

1: if \( n = 1 \) then return \( A \)
2: \( x \leftarrow \) lower median of \( A \)
3: \( A_L \leftarrow \) elements in \( A \) that are less than \( x \) \hspace{1cm} \triangleright \text{Divide}
4: \( A_R \leftarrow \) elements in \( A \) that are greater than \( x \) \hspace{1cm} \triangleright \text{Divide}
5: if \( i \leq A_L.\text{size} \) then
6: \hspace{1cm} return \text{selection}(A_L, A_L.\text{size}, i) \hspace{1cm} \triangleright \text{Conquer}
7: else if \( i > n - A_R.\text{size} \) then
8: \hspace{1cm} return \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \hspace{1cm} \triangleright \text{Conquer}
9: else
10: \hspace{1cm} return \( x \)

Recurrence for selection: \( T(n) = T(n/2) + O(n) \)
Selection Algorithm with Median Finder

\[
\text{selection}(A, n, i)
\]

1: \textbf{if} \( n = 1 \) \textbf{then return} \( A \)
2: \( x \leftarrow \) lower median of \( A \) \hfill \text{Divide}
3: \( A_L \leftarrow \) elements in \( A \) that are less than \( x \) \hfill \text{Divide}
4: \( A_R \leftarrow \) elements in \( A \) that are greater than \( x \)
5: \textbf{if} \( i \leq A_L.\text{size} \) \textbf{then}
6: \textbf{return} \text{selection}(\( A_L, A_L.\text{size}, i \)) \hfill \text{Conquer}
7: \textbf{else if} \( i > n - A_R.\text{size} \) \textbf{then}
8: \textbf{return} \text{selection}(\( A_R, A_R.\text{size}, i - (n - A_R.\text{size}) \)) \hfill \text{Conquer}
9: \textbf{else}
10: \textbf{return} \( x \)

- Recurrence for selection: \( T(n) = T(n/2) + O(n) \)
- Solving recurrence: \( T(n) = O(n) \)
Randomized Selection Algorithm

\begin{algorithm}
\textbf{selection}(A, n, i)
\begin{algorithmic}
\State \textbf{if} $n = 1$ \textbf{then} \textbf{return} $A$
\State $x \leftarrow$ random element of $A$ (called pivot)
\State $A_L \leftarrow$ elements in $A$ that are less than $x$ \Comment{Divide}
\State $A_R \leftarrow$ elements in $A$ that are greater than $x$ \Comment{Divide}
\State \textbf{if} $i \leq A_L$.size \textbf{then}
\State \hspace{1em} \textbf{return} \textbf{selection}(\textit{A}_L, A_L.size, \textit{i}) \Comment{Conquer}
\State \textbf{else if} $i > n - A_R$.size \textbf{then}
\State \hspace{1em} \textbf{return} \textbf{selection}(\textit{A}_R, A_R.size, \textit{i} - (n - A_R.size)) \Comment{Conquer}
\State \textbf{else}
\State \hspace{1em} \textbf{return} $x$
\end{algorithmic}
\end{algorithm}

\textbf{expected running time} = $O(n)$
Randomized Selection Algorithm

**selection**(\(A, n, i\))

1. **if** \(n = 1\) **then** return \(A\)
2. \(x \leftarrow\) random element of \(A\) (called pivot)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) ▶ Divide
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) ▶ Divide
5. **if** \(i \leq A_L\).size **then**
6. return **selection**\((A_L, A_L\).size, \(i\)) ▶ Conquer
7. **else if** \(i > n - A_R\).size **then**
8. return **selection**\((A_R, A_R\).size, \(i - (n - A_R\).size\)) ▶ Conquer
9. **else**
10. return \(x\)

- expected running time = \(O(n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Polynomial Multiplication

**Input:** two polynomials of degree $n - 1$

**Output:** product of two polynomials
**Polynomial Multiplication**

**Input:** two polynomials of degree $n - 1$

**Output:** product of two polynomials

**Example:**

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
Polynomial Multiplication

**Input:** two polynomials of degree $n - 1$

**Output:** product of two polynomials

**Example:**

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$
$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$
$$- 10x^4 + 15x^3 - 30x^2 + 25x$$
$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$
Polynomial Multiplication

**Input:** two polynomials of degree \( n - 1 \)

**Output:** product of two polynomials

**Example:**

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)
- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>polynomial-multiplication</strong>*(A, B, n)*</td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>let <em>C[k]</em> ← 0 for every <em>k</em> = 0, 1, 2, ···, 2<em>n</em> − 2</td>
</tr>
<tr>
<td>2:</td>
<td><strong>for</strong> <em>i</em> ← 0 to <em>n</em> − 1 <strong>do</strong></td>
</tr>
<tr>
<td>3:</td>
<td><strong>for</strong> <em>j</em> ← 0 to <em>n</em> − 1 <strong>do</strong></td>
</tr>
<tr>
<td>4:</td>
<td><em>C</em>[i + j] ← <em>C</em>[i + j] + <em>A</em>[i] × <em>B</em>[j]</td>
</tr>
<tr>
<td>5:</td>
<td><strong>return</strong> <em>C</em></td>
</tr>
</tbody>
</table>
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1: let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \ldots, 2n - 2\)
2: \textbf{for} \(i \leftarrow 0\) to \(n - 1\) \textbf{do}
3: \hspace{1em} \textbf{for} \(j \leftarrow 0\) to \(n - 1\) \textbf{do}
4: \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5: \textbf{return} \(C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[ p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[ q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[
p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)
\]

\[
q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)
\]

- \(p(x)\): degree of \(n - 1\) (assume \(n\) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x)\),
- \(p_H(x), p_L(x)\): polynomials of degree \(n/2 - 1\).
Divide-and-Conquer for Polynomial Multiplication

\[ p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[ q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \( p(x) \): degree of \( n - 1 \) (assume \( n \) is even)
- \( p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \( p_H(x), p_L(x) \): polynomials of degree \( n/2 - 1 \).

\[ pq = \left( p_H x^{n/2} + p_L \right) \left( q_H x^{n/2} + q_L \right) \]
Divide-and-Conquer for Polynomial Multiplication

\[ p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[ q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \( p(x) \): degree of \( n - 1 \) (assume \( n \) is even)
- \( p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \( p_H(x), p_L(x) \): polynomials of degree \( n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L)
= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[ pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[ = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[ pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[ = p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \\
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \\
+ multiply(p_L, q_L)
\]
Divide-and-Conquer for Polynomial Multiplication

\[ pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[ = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \\
+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \\
+ multiply(p_L, q_L) \]

- Recurrence: \( T(n) = 4T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[ pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[ = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \\
+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \\
+ \text{multiply}(p_L, q_L)
\]

- Recurrence: \( T(n) = 4T(n/2) + O(n) \)
- \( T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[p \cdot H \cdot x \cdot n/2 + p \cdot L \cdot q \cdot H \cdot x \cdot n/2 + q \cdot L \cdot p \cdot H 
= p \cdot H \cdot q \cdot H \cdot x \cdot n + p \cdot H \cdot q \cdot L + p \cdot L \cdot q \cdot H 
= (p \cdot H + p \cdot L)(q \cdot H + q \cdot L) - p \cdot H \cdot q \cdot H - p \cdot L \cdot q \cdot L\]
Reduce Number from 4 to 3

\[ pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[ = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[ pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]

\[ = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[ p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[ H = \text{multiply}(p_H, q_H) \]

\[ L = \text{multiply}(p_L, q_L) \]

\[ \text{multiply}(p, q) = r_H \times x^n + \text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \times x^{n/2} + r_L \]

Solving Recurrence:

\[ T(n) = 3T(n/2) + O(n) \]

\[ T(n) = O(n \log_2 3) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[ r_H = \text{multiply}(p_H, q_H) \]
\[ r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[ r_H = \text{multiply}(p_H, q_H) \]
\[ r_L = \text{multiply}(p_L, q_L) \]

\[
multiply(p, q) = r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[ r_H = \text{multiply}(p_H, q_H) \]
\[ r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \( T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[ r_H = \text{multiply}(p_H, q_H) \]
\[ r_L = \text{multiply}(p_L, q_L) \]

\[ \text{multiply}(p, q) = r_H \times x^n \]
\[ + \left( \text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \]
\[ + r_L \]

- Solving Recurrence: \( T(n) = 3T(n/2) + O(n) \)
- \( T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \( n \) is a power of 2. Arrays are 0-indexed.

\[
multiply(A, B, n)
\]

1. if \( n = 1 \) then return \((A[0]B[0])\)
2. \( A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3. \( B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4. \( C_L \leftarrow multiply(A_L, B_L, n/2) \)
5. \( C_H \leftarrow multiply(A_H, B_H, n/2) \)
6. \( C_M \leftarrow multiply(A_L + A_H, B_L + B_H, n/2) \)
7. \( C \leftarrow \) array of \((2n - 1)\) 0’s
8. for \( i \leftarrow 0 \) to \( n - 2 \) do
9. \( C[i] \leftarrow C[i] + C_L[i] \)
10. \( C[i + n] \leftarrow C[i + n] + C_H[i] \)
11. \( C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \( C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest

- Trivial algorithm: $O(n^2)$ running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Time for combine = $O(n)$ (many technicalities omitted)
Recurrence:
$$T(n) = 2T(n/2) + O(n)$$
Running time: $O(n \log n)$
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Time for combine = $O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

**Input:** two \( n \times n \) matrices \( A \) and \( B \)

**Output:** \( C = AB \)
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

**Input:** two $n \times n$ matrices $A$ and $B$

**Output:** $C = AB$

Naive Algorithm: matrix-multiplication($A, B, n$)

1. $\texttt{for } i \leftarrow 1 \text{ to } n \text{ do}$
2. $\quad \texttt{for } j \leftarrow 1 \text{ to } n \text{ do}$
3. $\quad \quad C[i, j] \leftarrow 0$
4. $\quad \texttt{for } k \leftarrow 1 \text{ to } n \text{ do}$
5. $\quad \quad C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. $\quad \texttt{return } C$

Running time = $O(n^3)$
Matrix Multiplication

**Input:** two $n \times n$ matrices $A$ and $B$

**Output:** $C = AB$

Naive Algorithm: \texttt{matrix-multiplication}(A, B, n)

1. \textbf{for} $i \leftarrow 1$ to $n$ \textbf{do}
2. \hspace{1em} \textbf{for} $j \leftarrow 1$ to $n$ \textbf{do}
3. \hspace{2em} $C[i, j] \leftarrow 0$
4. \hspace{2em} \textbf{for} $k \leftarrow 1$ to $n$ \textbf{do}
5. \hspace{3em} $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. \hspace{1em} \textbf{return} $C$

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad n/2 \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad n/2 \]

\[ C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- matrix\_multiplication(A, B) recursively calls matrix\_multiplication(A_{11}, B_{11}), matrix\_multiplication(A_{12}, B_{21}), \ldots

Recurrence for running time:
\[ T(n) = 8T(n/2) + O(n^3) \]
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\quad n/2
\quad B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\quad n/2
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix\_multiplication\((A, B)\) recursively calls matrix\_multiplication\((A_{11}, B_{11})\), matrix\_multiplication\((A_{12}, B_{21})\), \ldots
- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- \( T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \( T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[ T(n) = 2T(n/2) + O(n) \]
Recursion-Tree Method

\[ T(n) = 2T(n/2) + O(n) \]
Recursion-Tree Method

- \( T(n) = 2T(n/2) + O(n) \)

Each level takes running time \( O(n) \)
Recursion-Tree Method

- \( T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \( O(n) \)
- There are \( O(lg\ n) \) levels
Recursion-Tree Method

- \( T(n) = 2T(n/2) + O(n) \)

Each level takes running time \( O(n) \)
There are \( O(\lg n) \) levels
Running time = \( O(n \lg n) \)
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[ T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

- Total running time at level \( i \)?
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n) \)

\[
\begin{align*}
\text{Total running time at level } i & \quad \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n
\end{align*}
\]
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n) \)

Total running time at level \( i \)? \( \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

Index of last level?
Recursion-Tree Method

\[ T(n) = 3T(n/2) + O(n) \]

- Total running time at level \( i \): \( \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level: \( \lg_2 n \)
Recursion-Tree Method

\[ T(n) = 3T(n/2) + O(n) \]

Total running time at level \( i \)? \( \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

Index of last level? \( \lg_2 n \)

Total running time?
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n) \)

- Total running time at level \( i \): \( \frac{n}{2^i} \times 3^i = \left( \frac{3}{2} \right)^i n \)
- Index of last level? \( \lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left( \frac{3}{2} \right)^i n = O \left( n \left( \frac{3}{2} \right)^{\lg_2 n} \right) = O \left( 3^{\lg_2 n} \right) = O \left( n^{\lg_2 3} \right).
\]
Recursion-Tree Method

\[ T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]

The total running time at level \( i \) is given by:

\[ T(n) = 3^i n^2 \]

The index of the last level is \( \log_2(n) \).

The total running time is:

\[ T(n) = \sum_{i=0}^{\log_2 n} 3^i n^2 \leq O(n^2) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O\left(n^2\right) \]
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n^2) \)

**Total running time at level \( i \)?**
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \( i \): \( \left( \frac{n}{2^i} \right)^2 \times 3^i = \left( \frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \( i \)? \( \left( \frac{n}{2^i} \right)^2 \times 3^i = \left( \frac{3}{4} \right)^i n^2 \)

- Index of last level?
Recursion-Tree Method

\[ T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]

- Total running time at level \( i \)? \( \left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)
- Index of last level? \( \lg_2 n \)
Recursion-Tree Method

- \( T(n) = 3T(n/2) + O(n^2) \)

\[ \begin{array}{c}
\text{(n/2)}^2 \\
(n/4)^2 \\
(n/8)^2
\end{array} \quad \begin{array}{c}
\text{(n/2)}^2 \\
(n/4)^2 \\
(n/8)^2
\end{array} \quad \begin{array}{c}
\text{(n/2)}^2 \\
(n/4)^2 \\
(n/8)^2
\end{array} \]

- Total running time at level \( i \)? \( (\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)
- Index of last level? \( \log_2 n \)
- Total running time?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level $i$: $(\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$

- Index of last level: $\lg_2 n$

- Total running time:

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2)$$
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

- Total running time at level $i$: $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$

- Index of last level: $\lg_2 n$

- Total running time:

\[
\sum_{i=0}^{\lg_2 n} \left( \frac{3}{4} \right)^i n^2 = O(n^2).
\]
### Master Theorem

**Recurrences**  
<table>
<thead>
<tr>
<th>Recurrence</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem**  

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
# Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem**  

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem** \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem** $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
**Master Theorem**

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem** \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a 
\end{cases}
\]
## Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem**  

$$T(n) = aT(n/b) + O(n^c),$$ where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}  
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a 
\end{cases}$$
Master Theorem

Recurrences

<table>
<thead>
<tr>
<th>Equation</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem** $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg_2 3)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
? & \text{if } c = \lg_b a \\
? & \text{if } c > \lg_b a
\end{cases}
$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem** \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem: $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ ?? & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$
### Master Theorem

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

**Theorem**  

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} 
O(n^{\lfloor \lg_b a \rfloor}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}$$
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \log n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}
\]

Ex: \( T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_ba \\
O(n^c \lg n) & \text{if } c = \lg_ba \\
O(n^c) & \text{if } c > \lg_ba 
\end{cases}
\]

Ex: \( T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem  \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

Ex: \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- **Ex:** \( T(n) = 3T(n/2) + O(n) \). Which Case?
**Theorem** \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- **Ex:** \( T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem: $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^c) & \text{if } c > \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^\lg_b a) & \text{if } c < \lg_b a 
\end{cases}
\]

Ex: \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)

Ex: \( T(n) = 3T(n/2) + O(n) \). Case 1. \( T(n) = O(n^{\lg_2 3}) \)

Ex: \( T(n) = T(n/2) + O(1) \). Which Case?
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}
\]

- Ex: \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- Ex: \( T(n) = 3T(n/2) + O(n) \). Case 1. \( T(n) = O(n^{\lg_2 3}) \)
- Ex: \( T(n) = T(n/2) + O(1) \). Case 2.
Theorem: $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: $T(n) = T(n/2) + O(1)$. Case 2. $T(n) = O(\lg n)$
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- Ex: \( T(n) = 3T(n/2) + O(n) \). Case 1. \( T(n) = O(n^{\lg_2 3}) \)
- Ex: \( T(n) = T(n/2) + O(1) \). Case 2. \( T(n) = O(\lg n) \)
- Ex: \( T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}
\]

- **Ex:** \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- **Ex:** \( T(n) = 3T(n/2) + O(n) \). Case 1. \( T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \( T(n) = T(n/2) + O(1) \). Case 2. \( T(n) = O(\lg n) \)
- **Ex:** \( T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \( T(n) = aT(n/b) + O(n^c) \), where \( a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases} 
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a 
\end{cases}
\]

- **Ex:** \( T(n) = 4T(n/2) + O(n^2) \). Case 2. \( T(n) = O(n^2 \lg n) \)
- **Ex:** \( T(n) = 3T(n/2) + O(n) \). Case 1. \( T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \( T(n) = 2T(n/2) + O(1) \). Case 2. \( T(n) = O(\lg n) \)
- **Ex:** \( T(n) = 2T(n/2) + O(n^2) \). Case 3. \( T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[ T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- 1 node
  - \( n^c \)

- \( a \) nodes
  - \( (n/b)^c \)

- \( a^2 \) nodes
  - \( (n/b^2)^c \)
  - \( (n/b^2)^c \)

- \( a^3 \) nodes
  - \( \left(\frac{n}{b^3}\right)^c \)
  - \( \left(\frac{n}{b^3}\right)^c \)

- \( c < \lg b \): bottom-level dominates

- \( c = \frac{n}{\lg b} \): all levels have same time

- \( c > \lg b \): top-level dominates

\[ O\left(\frac{n}{\lg b^a}\right) \]
Proof of Master Theorem Using Recursion Tree

\[ T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[ n^c \]

\[ \frac{a}{b^c} n^c \]

\( \frac{a}{b^c} n^c \)

\[ \frac{(n/b)^c}{(n/b^2)^c} \]

\[ \frac{(n/b)^c}{(n/b^2)^c} \]
Proof of Master Theorem Using Recursion Tree

\[ T(n) = aT(n/b) + O(n^c) \]

- 1 node
- \( a \) nodes
- \( a^2 \) nodes
- \( a^3 \) nodes

\( c < \lg_b a \): bottom-level dominates: \( \left( \frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)
Proof of Master Theorem Using Recursion Tree

\[ T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \( c < \lg_b a \): bottom-level dominates: \( \left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \( c = \lg_b a \): all levels have same time: \( n^c \lg_b n = O(n^c \lg n) \)
Proof of Master Theorem Using Recursion Tree

\[ T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \( c < \log_b a \): bottom-level dominates: \( \left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \)
- \( c = \log_b a \): all levels have same time: \( n^c \log_b n = O(n^c \log n) \)
- \( c > \log_b a \): top-level dominates: \( O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
   - Quicksort
   - Lower Bound for Comparison-Based Sorting Algorithms
   - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing $n$-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0$, $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ···

**n-th Fibonacci Number**

**Input:** integer $n > 0$

**Output:** $F_n$
Computing $F_n$: Stupid Divide-and-Conquer Algorithm

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fib</strong>($n$)</td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>if $n = 0$ return 0</td>
</tr>
<tr>
<td>2:</td>
<td>if $n = 1$ return 1</td>
</tr>
<tr>
<td>3:</td>
<td>return Fib($n - 1$) + Fib($n - 2$)</td>
</tr>
</tbody>
</table>

**Q:** Is the running time of the algorithm polynomial or exponential in $n$?

**A:** Exponential

$F_n$ is exponential in $n$. Therefore, the running time is at least $\Omega(F_n)$.
Computing $F_n$ : Stupid Divide-and-Conquer Algorithm

Fib($n$)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in $n$?

A: Exponential
Computing $F_n$ : Stupid Divide-and-Conquer Algorithm

\textbf{Fib}(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

\textbf{Q:} Is the running time of the algorithm polynomial or exponential in $n$?

\textbf{A:} Exponential

- Running time is at least $\Omega(F_n)$
Computing $F_n$ : Stupid Divide-and-Conquer Algorithm

**Fib**($n$)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

**Q:** Is the running time of the algorithm polynomial or exponential in $n$?

**A:** Exponential

- Running time is at least $\Omega(F_n)$
- $F_n$ is exponential in $n$
Computing $F_n$: Reasonable Algorithm

Fib($n$)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to $n$ do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming

Running time = ?
Computing $F_n$: Reasonable Algorithm

```
Fib(n)
1: F[0] ← 0
2: F[1] ← 1
3: for i ← 2 to n do
4:     F[i] ← F[i − 1] + F[i − 2]
5: return F[n]
```

- Dynamic Programming
- Running time $=$ ?
Computing $F_n$: Reasonable Algorithm

Fib$(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to $n$ do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing $F_n$: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power\((n)\)

1: if \(n = 0\) then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2: \(R \leftarrow \text{power}([n/2])\)
3: \(R \leftarrow R \times R\)
4: if \(n\) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\)
5: return \(R\)

Fib\((n)\)

1: if \(n = 0\) then return 0
2: \(M \leftarrow \text{power}(n - 1)\)
3: return \(M[1][1]\)
**power** ($n$)

1: if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

2: $R \leftarrow \text{power}([n/2])$

3: $R \leftarrow R \times R$

4: if $n$ is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return $R$

**Fib** ($n$)

1: if $n = 0$ then return 0

2: $M \leftarrow \text{power}(n - 1)$

3: return $M[1][1]$

- Recurrence for running time?
power($n$)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if $n$ is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return $R$

Fib($n$)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

Recurrence for running time? $T(n) = T(n/2) + O(1)$
power\( (n) \)

1: if \( n = 0 \) then return \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

2: \( R \leftarrow \text{power}\left(\lfloor n/2 \rfloor\right) \)

3: \( R \leftarrow R \times R \)

4: if \( n \) is odd then \( R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

5: \textbf{return} \( R \)

Fib\( (n) \)

1: if \( n = 0 \) then return 0

2: \( M \leftarrow \text{power}\left(n - 1\right) \)

3: \textbf{return} \( M[1][1] \)

- Recurrence for running time? \( T(n) = T(n/2) + O(1) \)
- \( T(n) = O(\lg n) \)
Running time = $O(\lg n)$: We Cheated!

The number of bits needed to represent $F(n)$ is $\Theta(n)$. We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time = $O(\lg n)$: We Cheated!

**Q:** How many bits do we need to represent $F(n)$?

We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\lg n)$. Fixing the Problem: To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

**Q:** How many bits do we need to represent $F(n)$?

**A:** $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$. 
Running time $= O(\lg n)$: We Cheated!

**Q:** How many bits do we need to represent $F(n)$?

**A:** $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

**Fixing the Problem**

To compute $F_n$, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

Write down recurrence for running time
Solve recurrence using master theorem
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
  \[ T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \ldots:
  \[ T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
  \[ T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \ldots :
  \[ T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
  \[ T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
  \[ T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
  \[ T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
  \[ T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
  \[ T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- To improve running time, design better algorithm for “combine” step, or reduce number of recursions, ...