CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
 - Counting Inversions
2. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
3. Polynomial Multiplication
4. Other Classic Algorithms using Divide-and-Conquer
5. Solving Recurrences
6. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Greedy Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>mainly for combinatorial optimization problems</td>
</tr>
<tr>
<td>trivial algorithm runs in exponential time</td>
</tr>
<tr>
<td>greedy algorithm gives an efficient algorithm</td>
</tr>
<tr>
<td>main focus of analysis: correctness of algorithm</td>
</tr>
</tbody>
</table>
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lfloor n/2 \rfloor$)

Divide: trivial
Conquer: 4, 5
Combine: 6
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

 \[
 T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
 \end{cases}
 \]

- With some tolerance of informality:

 \[
 T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 2T(n/2) + O(n) & \text{if } n \geq 2
 \end{cases}
 \]
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \text{running time for sorting } n \text{ numbers}, \) then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n). \) (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

- **Input:** an sequence A of n numbers
- **Output:** number of inversions in A

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):

$(10, 8), (10, 9), (15, 9), (15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):

(10, 8), (10, 9), (15, 9), (15, 12)
Naive Algorithm for Counting Inversions

count-inversions\((A, n)\)

1: \(c \leftarrow 0\)
2: \textbf{for} every \(i \leftarrow 1\) to \(n - 1\) \textbf{do}
3: \hspace{1em} \textbf{for} every \(j \leftarrow i + 1\) to \(n\) \textbf{do}
4: \hspace{2em} \textbf{if} \(A[i] > A[j]\) \textbf{then} \(c \leftarrow c + 1\)
5: \textbf{return} \(c\)
Divide-and-Conquer

\[p = \left\lfloor \frac{n}{2} \right\rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \left\{ (i, j) : B[i] > C[j] \right\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = |\{(i, j) : B[i] > C[j]\}| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{c} 3 \ 8 \ 12 \ 20 \ 32 \ 48 \end{array} \quad \text{total} = 0$$

$$C: \begin{array}{c} 5 \ 7 \ 9 \ 25 \ 29 \end{array}$$
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{cccccc}
B: & 3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\quad \text{total} = 0
\]

\[
\begin{array}{cccccc}
C: & 5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

+0

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0

+0

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}

$\text{total} = 0$

+0

\begin{array}{cc}
3 & 5 \\
\end{array}
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\text{total} &= \ 0 \\
\end{align*}$

\[
\begin{array}{c|c|c|c|c|c|c}
& 3 & 8 & 12 & 20 & 32 & 48 \\
\hline
3 & 8 & 12 & 20 & 32 & 48 & +0 \\
5 & 7 & 9 & 25 & 29 & & \\
\hline
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0

$+0$

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

$+0$

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

+0 +2

$3 5 7 8$

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$$

$$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$$

Total = 2

+0 +2

\begin{array}{cccc}
3 & 5 & 7 & 8 \\
\end{array}$$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 2$

$+0 +2$

$\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
B: & 3 & 8 & 12 & 20 & 32 & 48 \\
C: & 5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[\text{total} = 2\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

$+0 \quad +2 \quad +3$

$\text{total}= 5$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}\] total = 5

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}\]

\[\begin{array}{cccccc}
+0 & +2 & +3 \\
\end{array}\]

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 \\
\end{array}\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

Total = 8

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
+0 & +2 & +3 & +3 \\
\end{array}
\]
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\end{align*}
\]

\[
\begin{align*}
& +0 \\
& +2 \\
& +3 \\
& +3 \\
\end{align*}
\]

\[
\begin{align*}
& 3 \quad 5 \quad 7 \quad 8 \quad 9 \quad 12 \quad 20 \\
\end{align*}
\]

\(\text{total} = 8 \)
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
C: 5 7 9 25 29

Total = 8

+0 +2 +3 +3

3 5 7 8 9 12 20 25
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
C: 5 7 9 25 29

Total = 8

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:
3 8 12 20 32 48

C:
5 7 9 25 29

$+0$ $+2$ $+3$ $+3$

$3 5 7 8 9 12 20 25 29$

total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

B: C: total = 8

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}$

$\begin{array}{cccccc}
+0 & +2 & +3 & +3 & +5 \\
\end{array}$

$\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\end{array}$

$\text{total} = 13$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\text{total} = 13 \\
+0 & +2 & +3 & +3 & +5 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{align*}
B: & \quad 3 & 8 & 12 & 20 & 32 & 48 \\
C: & \quad 5 & 7 & 9 & 25 & 29 \\
\end{align*}
\]

\[\text{total} = 18\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 18$

+0 +2 +3 +3 +5 +5

3 5 7 8 9 12 20 25 29 32 48
Count Inversions between B and C

Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: \(\text{count} \leftarrow 0; \)
2: \(A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1 \)
3: \(\textbf{while } i \leq n_1 \text{ or } j \leq n_2 \text{ do} \)
4: \(\textbf{if } j > n_2 \text{ or } (i \leq n_1 \text{ and } B[i] \leq C[j]) \text{ then} \)
5: \(A[i + j − 1] \leftarrow B[i]; i \leftarrow i + 1 \)
6: \(\text{count} \leftarrow \text{count} + (j − 1) \)
7: \(\textbf{else} \)
8: \(A[i + j − 1] \leftarrow C[j]; j \leftarrow j + 1 \)
9: \(\textbf{return } (A, \text{count}) \)
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n)
\]

1. \textbf{if} $n = 1$ \textbf{then}
2. \quad \textbf{return} $(A, 0)$
3. \textbf{else}
4. \quad $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)$
5. \quad $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor)$
6. \quad $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. \quad \textbf{return} $(A, m_1 + m_2 + m_3)$
A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1. **if** $n = 1$ **then**
2. **return** $(A, 0)$
3. **else**
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. **return** $(A, m_1 + m_2 + m_3)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return ($A, 0$)
3: else
4: (B, m_1) ← sort-and-count($A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor$)
5: (C, m_2) ← sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: (A, m_3) ← merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return ($A, m_1 + m_2 + m_3$)

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1. **if** $n = 1$ **then**
2. **return** ($A, 0$)
3. **else**
4. (B, m_1) ← sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5. (C, m_2) ← sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6. (A, m_3) ← merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7. **return** ($A, m_1 + m_2 + m_3$)

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Recurse</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption

We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort

quicksort(*A, n*)

1: if *n* ≤ 1 then return *A*
2: *x* ← lower median of *A*
3: *A_L* ← array of elements in *A* that are less than *x* \ Divide
4: *A_R* ← array of elements in *A* that are greater than *x* \ Divide
5: *B_L* ← quicksort(*A_L*, length of *A_L*) \ Conquer
6: *B_R* ← quicksort(*A_R*, length of *A_R*) \ Conquer
7: *t* ← number of times *x* appear in *A*
8: return concatenation of *B_L*, *t* copies of *x*, and *B_R*
Quicksort

quicksort(A, n)

1: if \(n \leq 1 \) then return A
2: \(x \leftarrow \) lower median of A
3: \(A_L \leftarrow \) array of elements in A that are less than \(x \) \(\text{// Divide} \)
4: \(A_R \leftarrow \) array of elements in A that are greater than \(x \) \(\text{// Divide} \)
5: \(B_L \leftarrow \) quicksort\((A_L, \text{length of } A_L)\) \(\text{// Conquer} \)
6: \(B_R \leftarrow \) quicksort\((A_R, \text{length of } A_R)\) \(\text{// Conquer} \)
7: \(t \leftarrow \) number of times \(x \) appear in A
8: return concatenation of \(B_L \), \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
Quicksort

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\) \(\|\) Divide
4. \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\) \(\|\) Divide
5. \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\) \(\|\) Conquer
6. \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\) \(\|\) Conquer
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return concatenation of \(B_L\), \(t\) copies of \(x\), and \(B_R\)

- Recurrence \(T(n) \leq 2T(n/2) + O(n)\)
- Running time = \(O(n \log n)\)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a **pivot randomly** and pretend it is the median (it is practical)
quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_L \leftarrow$ array of elements in A that are less than x \ Divide
4: $A_R \leftarrow$ array of elements in A that are greater than x \ Divide
5: $B_L \leftarrow$ quicksort(A_L, length of A_L) \ Conquer
6: $B_R \leftarrow$ quicksort(A_R, length of A_R) \ Conquer
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random.
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3: \(A_L \leftarrow\) array of elements in \(A\) that are less than \(x\) \quad \| \quad \text{Divide}
4: \(A_R \leftarrow\) array of elements in \(A\) that are greater than \(x\) \quad \| \quad \text{Divide}
5: \(B_L \leftarrow\) quicksort\((A_L, \text{length of } A_L)\) \quad \| \quad \text{Conquer}
6: \(B_R \leftarrow\) quicksort\((A_R, \text{length of } A_R)\) \quad \| \quad \text{Conquer}
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return concatenation of \(B_L\), \(t\) copies of \(x\), and \(B_R\)

Lemma \(\text{The expected running time of the algorithm is } O(n \lg n).\)
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[i \quad j \]

\[
\begin{array}{cccccccccccccccc}
64 & 82 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 17 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

![Array elements](image)

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```plaintext
i

17 37 64 29 38 45 94 69 25 76 15 92 75 82 85
```

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

```
17  37  15  29  38  45  94  69  25  76  64  92  75  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.

```
17 37 15 29 38 45 94 69 25 76 64 92 75 82 85
```
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17 37 15 29 38 45 64 69 25 76 94 92 75 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

```
17 37 15 29 38 45 25 64 69 76 94 92 75 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
\textbf{partition}(A, \ell, r)

1: \(p \leftarrow \) random integer between \(\ell \) and \(r \), swap \(A[p] \) and \(A[\ell] \)
2: \(i \leftarrow \ell, j \leftarrow r \)
3: \textbf{while true do}
4: \quad \textbf{while } i < j \text{ and } A[i] < A[j] \text{ do } j \leftarrow j - 1
5: \quad \textbf{if } i = j \text{ then break}
6: \quad \text{swap } A[i] \text{ and } A[j]; i \leftarrow i + 1
7: \quad \textbf{while } i < j \text{ and } A[i] < A[j] \text{ do } i \leftarrow i + 1
8: \quad \textbf{if } i = j \text{ then break}
9: \quad \text{swap } A[i] \text{ and } A[j]; j \leftarrow j - 1
10: \textbf{return } i
In-Place Implementation of Quick-Sort

\[\text{quicksort}(A, \ell, r) \]

1. if \(\ell \geq r \) then return
2. \(m \leftarrow \text{partition}(A, \ell, r) \)
3. quicksort\((A, \ell, m - 1)\)
4. quicksort\((A, m + 1, r)\)

To sort an array \(A \) of size \(n \), call quicksort\((A, 1, n)\).

Note: We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```plaintext
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

![Diagram](image)
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5
```
Msort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```plaintext
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than \(O(n \log n) \) for sorting?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1?$

$x \leq 2?$

$x = 3?$

1 2 3 4
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.

 Q: How many questions do you need to ask Bob in order to know x?

 A: $\lceil \log_2 N \rceil$.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 1?</td>
<td>x ≤ 2?</td>
<td>x = 3?</td>
<td></td>
</tr>
</tbody>
</table>
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 1$?</td>
<td>$x \leq 2$?</td>
</tr>
<tr>
<td>$x = 3$?</td>
<td>$1 \ 2 \ 3 \ 4$</td>
</tr>
</tbody>
</table>

Q: How many questions do you need to ask Bob in order to know x?
A: $\lceil \log_2 N \rceil$.

32/73
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \{1, 2, 3, \ldots, n\} in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π?"

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \(\{1, 2, 3, \cdots , n\} \) in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”,

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

Sorting solves the problem in time $O(n \lg n)$. Our goal: $O(n)$ running time
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

\[
\text{quicksort}(A, n)
\]

1. **if** \(n \leq 1 \) **then return** \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) ▶ Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) ▶ Divide
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\) ▶ Conquer
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\) ▶ Conquer
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. **return** the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Selection Algorithm with Median Finder

selection(A, n, i)

1: if n = 1 then return A
2: x ← lower median of A
3: A_L ← elements in A that are less than x ▶ Divide
4: A_R ← elements in A that are greater than x ▶ Divide
5: if i ≤ A_L.size then
6: return selection(A_L, A_L.size, i) ▶ Conquer
7: else if i > n − A_R.size then
8: return selection(A_R, A_R.size, i − (n − A_R.size)) ▶ Conquer
9: else
10: return x
Selection Algorithm with Median Finder

selection(A, n, i)

1: if $n = 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} ▶ Divide
4: $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} ▶ Divide
5: if $i \leq A_L$.size then
6: \hspace{1cm} return selection(A_L, A_L.size, i) \hspace{1cm} ▶ Conquer
7: else if $i > n - A_R$.size then
8: \hspace{1cm} return selection(A_R, A_R.size, $i - (n - A_R$.size)) \hspace{1cm} ▶ Conquer
9: else
10: \hspace{1cm} return x

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
Selection Algorithm with Median Finder

\[\text{selection}(A, n, i) \]

1: \textbf{if} \(n = 1 \) \textbf{then} \textbf{return} \(A \)
2: \(x \leftarrow \) lower median of \(A \)
3: \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hfill \(\triangleright \) Divide
4: \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hfill \(\triangleright \) Divide
5: \textbf{if} \(i \leq A_L.\text{size} \) \textbf{then}
6: \textbf{return} \text{selection}(A_L, A_L.\text{size}, i) \hfill \(\triangleright \) Conquer
7: \textbf{else if} \(i > n - A_R.\text{size} \) \textbf{then}
8: \textbf{return} \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \hfill \(\triangleright \) Conquer
9: \textbf{else}
10: \textbf{return} \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\textbf{selection}(A, n, i)

1: \textbf{if} $n = 1$ \textbf{then} return A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} \triangleright \text{Divide}
4: $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} \triangleright \text{Divide}
5: \textbf{if} $i \leq A_L$.size \textbf{then}
6: \hspace{1cm} \textbf{return} selection(A_L, A_L.size, i) \hspace{1cm} \triangleright \text{Conquer}
7: \textbf{else if} $i > n - A_R$.size \textbf{then}
8: \hspace{1cm} \textbf{return} selection(A_R, A_R.size, $i - (n - A_R$.size)) \hspace{1cm} \triangleright \text{Conquer}
9: \textbf{else}
10: \hspace{1cm} \textbf{return} x

\text{expected running time} = \mathcal{O}(n)
Randomized Selection Algorithm

selection(*A*, *n*, *i*)

1: **if** *n* = 1 **then** return *A*
2: *x* ← random element of *A* (called pivot)
3: *A*_L ← elements in *A* that are less than *x* ▶ Divide
4: *A*_R ← elements in *A* that are greater than *x* ▶ Divide
5: **if** *i* ≤ *A*_L.size **then**
7: **else if** *i* > *n* − *A*_R.size **then**
8: return **selection**(*A*_R, *A*_R.size, *i* − (*n* − *A*_R.size)) ▶ Conquer
9: **else**
10: return *x*

- expected running time = \(O(n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$
$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$
$$- 10x^4 + 15x^3 - 30x^2 + 25x$$
$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

Input: $(4, -5, 2, 3), (-5, 6, -3, 2)$

Output: $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

\textbf{polynomial-multiplication}(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: \textbf{for} $i \leftarrow 0$ to $n - 1$ \textbf{do}
3: \hspace{1em} \textbf{for} $j \leftarrow 0$ to $n - 1$ \textbf{do}
4: \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: \textbf{return} C

\text{Running time: } O(n^2)
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1: let \(C[k] \leftarrow 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2: for \(i \leftarrow 0\) to \(n - 1\) do
3: for \(j \leftarrow 0\) to \(n - 1\) do
4: \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5: return \(C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[
p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)
\]
\[
q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)
\]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L)
\]
\[
= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} + \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \\
+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \\
+ \text{multiply}(p_L, q_L)
\]

\[\text{Recurrence: } T(n) = 4T(n/2) + O(n) \]
Divide-and-Conquer for Polynomial Multiplication

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n + (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} + multiply(p_L, q_L)
\]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3
Reduce Number from 4 to 3

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]

\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
\[\text{multiply}(p, q) = r_H \times x^{n} + \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} + r_L \]

Solving Recurrence:
\[T(n) = 3T(n/2) + O(n) \]
\[T(n) = O(n \log_3 2) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[
r_H = \text{multiply}(p_H, q_H) \\
r_L = \text{multiply}(p_L, q_L)
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
multiply(p, q) = r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
multiply(p, q) = r_H \times x^n + \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} + r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

multiply \((A, B, n)\)

1. if \(n = 1 \) then return \((A[0]B[0])\)
2. \(A_L \leftarrow A[0..n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3. \(B_L \leftarrow B[0..n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4. \(C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \)
5. \(C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \)
6. \(C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \)
7. \(C \leftarrow \text{array of } (2n - 1) \text{ 0's} \)
8. for \(i \leftarrow 0 \) to \(n - 2 \) do
9. \(C[i] \leftarrow C[i] + C_L[i] \)
10. \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11. \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
• Closest pair
• Convex hull
• Matrix multiplication
• FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- **Trivial algorithm:** \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.
- **Conquer**: Solve two sub-instances recursively.
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

![Diagram of points with a vertical line dividing them and arrows pointing to points within a certain distance δ.](image-url)
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider \(O(1) \) boxes nearby

Time for combine = \(O(n) \) (many technicalities omitted)

Recurrence:
\[
T(n) = 2T(n/2) + O(n)
\]

Running time:
\(O(n \log n) \)
Each box contains at most one pair
Each box contains at most one pair.
For each point, only need to consider $O(1)$ boxes nearby.
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)

Output: \(C = AB \)
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: $\text{matrix-multiplication}(A, B, n)$

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

running time = $O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}, \quad \frac{n}{2}
\]

\[
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}, \quad \frac{n}{2}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

\text{matrix_multiplication}(A, B) \text{ recursively calls } \text{matrix_multiplication}(A_{11}, B_{11}), \text{ matrix_multiplication}(A_{12}, B_{21}), \ldots
Try to Use Divide-and-Conquer

\[
\begin{align*}
A &= \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \quad & B &= \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\end{align*}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots

- \text{Recurrence for running time: } T(n) = 8T(n/2) + O(n^2)

- \text{Recurrence for running time: } T(n) = O(n^3)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[T(n) = 2T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 2T(n/2) + O(n)$

Each level takes running time $O(n)$
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\lg n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\lg n) \) levels

Running time = \(O(n \lg n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Diagram of recursion tree]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

\[
T(n) = 3T(n/2) + O(n)
\]

\[
\begin{align*}
T(n) &= 3T(n/2) + O(n) \\
 &\vdots \\
\end{align*}
\]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)

Index of last level? \(\lg_2 n \)

Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)?

\[\sum_{i=0}^{\log_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

$\begin{array}{c}
\text{Level 0: } n^2 \\
\text{Level 1: } (n/2)^2, (n/2)^2, (n/2)^2 \\
\text{Level 2: } (n/4)^2, (n/4)^2, (n/4)^2, (n/4)^2, (n/4)^2 \\
\text{Level 3: } (n/8)^2, (n/8)^2, (n/8)^2, (n/8)^2, (n/8)^2, (n/8)^2, (n/8)^2 \\
\end{array}$

- Total running time at level i: $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$
- Index of last level?

$\sum_{i=0}^{\log_2 n} (\frac{3}{4})^i n^2 = O(n^2)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \((\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)
- Index of last level? \(1g_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\lg_2 n \)

- Total running time?
Recursion-Tree Method

- \[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \((\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2 \)
- Index of last level? \(\log_2 n \)
- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^{\log_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$
T(n) = \begin{cases}
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases}
$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^2) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
\text{??} & \text{if } c = \lg_b a \\
\text{??} & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
? & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}$$
Master Theorem

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

Recurrences

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). **Case 2.**
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^\lfloor \lg_b a \rfloor) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \[T(n) = aT(n/b) + O(n^c), \] where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^\lfloor \lg_b a \rfloor) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \log n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[n^c \]

\[a \text{ nodes} \]

\[(n/b)^c \]

\[a^2 \text{ nodes} \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[a^3 \text{ nodes} \]

\[\left(\frac{n}{b^3}\right)^c \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- 1 node
- \(n^c \)
- \(n^c \)
- \(\frac{a}{b^c} n^c \)
- \(a \) nodes
- \((n/b)^c \)
- \((n/b)^c \)
- \(\frac{a}{b^c} n^c \)
- \(a^2 \) nodes
- \((n/b^2)^c \)
- \((n/b^2)^c \)
- \(\frac{a}{b^c} n^c \)
- \((n/b^2)^c \)
- \((n/b^2)^c \)
- \(\frac{a}{b^c} n^c \)
- \(a^3 \) nodes
- \(\frac{n}{b^3}^c \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- 1 node
- \(n^c \)
- \(a \) nodes
- \((n/b)^c \)
- \((n/b)^c \)
- \(\frac{a}{b^c} n^c \)
- \(a^2 \) nodes
- \((n/b^2)^c \)
- \((n/b^2)^c \)
- \((n/b^2)^c \)
- \(\left(\frac{a}{b^c}\right)^2 n^c \)
- \(a^3 \) nodes
- \(\left(\frac{n}{b^3}\right)^c \)

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **1 node**
 - \(n^c \)

- **1 node**
 - \(n^c \)

- **a nodes**
 - \(\left(\frac{n}{b}\right)^c \)
 - \(\left(\frac{n}{b}\right)^c \)

- **a^2 nodes**
 - \(\left(\frac{n}{b^2}\right)^c \)
 - \(\left(\frac{n}{b^2}\right)^c \)

- **a^3 nodes**
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)

\[c < \lg_b a : \text{bottom-level dominates: } \left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \]

\[c = \lg_b a : \text{all levels have same time: } n^c \lg_b n = O(n^c \lg n) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **\(a \) nodes**:
 - \((n/b)^c \)
 - \((n/b)^c \)
 - \((n/b)^c \)
 - \((n/b)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)

- **\(a^2 \) nodes**:
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)

- **\(a^3 \) nodes**:
 - \(\left(\frac{n}{b^3}\right)^c \)
 - \(\left(\frac{n}{b^3}\right)^c \)

- **\(c < \log_b a \)**: bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \)

- **\(c = \log_b a \)**: all levels have same time: \(n^c \log_b n = O(n^c \log n) \)

- **\(c > \log_b a \)**: top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

\textbf{n-th Fibonacci Number}

\begin{itemize}
 \item \textbf{Input:} integer $n > 0$
 \item \textbf{Output:} F_n
\end{itemize}
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return $\text{Fib}(n - 1) + \text{Fib}(n - 2)$

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return $\text{Fib}(n - 1) + \text{Fib}(n - 2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

<table>
<thead>
<tr>
<th>Fib(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if $n = 0$ return 0</td>
</tr>
<tr>
<td>2: if $n = 1$ return 1</td>
</tr>
<tr>
<td>3: return Fib($n - 1$) + Fib($n - 2$)</td>
</tr>
</tbody>
</table>

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

Running time is at least $\Omega(F_n)$
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing \(F_n \): Reasonable Algorithm

\[
\text{Fib}(n)
\]

1: \(F[0] \leftarrow 0 \)
2: \(F[1] \leftarrow 1 \)
3: \(\text{for } i \leftarrow 2 \text{ to } n \text{ do} \)
4: \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
5: \(\text{return } F[n] \)

- Dynamic Programming

Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: \hspace{1em} return $F[n]$

- Dynamic Programming
- Running time $= ?$
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\ldots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

- Recurrence for running time?
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2: $R \leftarrow \text{power}([n/2])$

3: $R \leftarrow R \times R$

4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

Fib(n)

1: if $n = 0$ then return 0

2: $M \leftarrow \text{power}(n - 1)$

3: return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.

Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time $= O(lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

Fixing the Problem
To compute $F(n)$, we need $O(lg n)$ basic arithmetic operations on integers.
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time $= O(lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(lg n)$ basic arithmetic operations on integers.
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋯:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
Summary: Divide-and-Conquer

- **Merge sort, quicksort, count-inversions, closest pair, · · ·:**
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- **Integer Multiplication:**
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- **Matrix Multiplication:**
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ...:
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time