CSE 431/531: Algorithm Analysis and Design (Fall 2021)
Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(*A, n*)

1: if *n* = 1 then
2: return *A*
3: else
4: *B* ← merge-sort(*A*[1..⌊*n*/2], ⌊*n*/2⌋)
5: *C* ← merge-sort(*A*[⌊*n*/2⌋ + 1..*n*], ⌈*n*/2⌉)
6: return merge(*B*, *C*, ⌊*n*/2⌋, ⌈*n*/2⌉)
merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$
There are $O(\lg n)$ levels
Running time $= O(n \lg n)$
Better than insertion sort
Running Time for Merge-Sort Using Recurrence

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases} \]
Running Time for Merge-Sort Using Recurrence

- $T(n) =$ running time for sorting n numbers, then

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

```
10  8  15  9  12
  8  9  10  12  15
```
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
Naive Algorithm for Counting Inversions

count-inversions\((A, n)\)

1: \(c \leftarrow 0\)
2: \textbf{for} every \(i \leftarrow 1\) to \(n - 1\) \textbf{do}
3: \hspace{1em} \textbf{for} every \(j \leftarrow i + 1\) to \(n\) \textbf{do}
4: \hspace{2em} \textbf{if} \(A[i] > A[j]\) \textbf{then} \(c \leftarrow c + 1\)
5: \textbf{return} \(c\)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = |\{(i, j) : B[i] > C[j]\}| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

$p = \lfloor n/2 \rfloor$, $B = A[1..p]$, $C = A[p + 1..n]

\begin{align*}
\#\text{invs}(A) &= \#\text{invs}(B) + \#\text{invs}(C) + m \\
m &= |\{(i, j) : B[i] > C[j]\}|
\end{align*}

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
B: & 3 & 8 & 12 & 20 & 32 & 48 \\
C: & 5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[\text{total} = 0\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $3 \ 8 \ 12 \ 20 \ 32 \ 48$

C: $5 \ 7 \ 9 \ 25 \ 29$

$+0$

3

total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]
C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[\text{total} = 0\]

\[+0\]

\[
\begin{array}{cc}
3 & 5 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \]

\[C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

total $= 0$

$+0$

\[\begin{array}{cc}
3 & 5 \\
\end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

$\begin{array}{cccc}
3 & 5 & 7 & \\
\end{array}$

$+0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$: $\text{total} = 0$

$B: \begin{array}{cccccc}3 & 8 & 12 & 20 & 32 & 48\end{array}$

$C: \begin{array}{cccccc}5 & 7 & 9 & 25 & 29\end{array}$

$3 \ 5 \ 7$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

$\text{total} = 2$

$\begin{array}{c} +0 \hfill +2 \\
3 & 5 & 7 & 8 \end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2$

$+2$

$3 5 7 8$

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total $= 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array}$

$C: \begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array}$

$\text{total}= 2$

$3 8 12 20 32 48$
$5 7 9 25 29$
$3 5 7 8 9$

$+0 +2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \\
\end{array}\]

B: total $= 5$

C: total $= 0$

$+0 \quad +2 \quad +3$

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 \\
\end{array}\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$ $+3$

total = 5
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B:
\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C:
\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

total = 8

B:
\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
\end{array}
\]

C:
\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}3 & 8 & 12 & 20 & 32 & 48 \end{array}$

C: $\begin{array}{cccccc}5 & 7 & 9 & 25 & 29 \end{array}$

$+0$ $+2$ $+3$ $+3$

$\begin{array}{cccccc}3 & 5 & 7 & 8 & 9 & 12 & 20 \end{array}$

$\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 8

$\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\end{array}$

$\begin{array}{cccccc}
3 & \textcolor{red}{5} & \textcolor{red}{7} & \textcolor{red}{8} & \textcolor{red}{9} & \textcolor{red}{12} & \textcolor{red}{20} & \textcolor{red}{25} \\
\end{array}$

$\begin{array}{cccccc}
+0 & +2 & +3 & +3 & \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>B:</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>25</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

total = 8

+0 +2 +3 +3

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48\]

C: \[5 \quad 7 \quad 9 \quad 25 \quad 29\]

\[+0 \quad +2 \quad +3 \quad +3\]

\[3 \quad 5 \quad 7 \quad 8 \quad 9 \quad 12 \quad 20 \quad 25 \quad 29\]

\[\text{total} = 8\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
+0 & +2 & +3 & +3 & +5 & \\
\end{array} \]

Total = 13
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 13

$+0$ $+2$ $+3$ $+3$ $+5$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 18$

$\begin{array}{ccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
total = 18

C: 5 7 9 25 29

+0 +2 +3 +3 +5 +5

+3 8 12 20 25 29 32 48
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

1: $count \leftarrow 0$;
2: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
5: append $B[i]$ to A; $i \leftarrow i + 1$
6: $count \leftarrow count + (j - 1)$
7: else
8: append $C[j]$ to A; $j \leftarrow j + 1$
9: return $(A, count)$
Sort and Count Inversions in \(A \)

- A procedure that returns the sorted array of \(A \) and counts the number of inversions in \(A \):

\[
\text{sort-and-count}(A, n)
\]

1. **if** \(n = 1 \) **then**
2. **return** \((A, 0)\)
3. **else**
4. \((B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)\)
5. \((C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)\)
6. \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7. **return** \((A, m_1 + m_2 + m_3)\)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

```plaintext
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return $(A, m_1 + m_2 + m_3)$
```

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count\((A, n)\)

1: if \(n = 1\) then
2: return \((A, 0)\)
3: else
4: \((B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)\)
5: \((C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)\)
6: \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7: return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
sort-and-count\((A, n)\)

1: if \(n = 1\) then
2: return \((A, 0)\)
3: else
4: \((B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)
5: \((C, m_2) \leftarrow \text{sort-and-count}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)\)
6: \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7: return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Recurse</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| | 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.
Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>64</td>
<td>29</td>
<td>15</td>
<td>17</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
</tr>
</tbody>
</table>
Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A
2: x ← lower median of A
3: AL ← elements in A that are less than x \ Divide
4: AR ← elements in A that are greater than x \ Divide
5: BL ← quicksort(AL, AL.size) \ Conquer
6: BR ← quicksort(AR, AR.size) \ Conquer
7: t ← number of times x appear A
8: return the array obtained by concatenating BL, the array containing t copies of x, and BR
Quicksort

\[
\text{quicksort}(A, n) \]

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \text{lower median of } A \)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \hspace{1cm} \| \hspace{1cm} \text{Divide}
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \hspace{1cm} \| \hspace{1cm} \text{Divide}
5. \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \hspace{1cm} \| \hspace{1cm} \text{Conquer}
6. \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \hspace{1cm} \| \hspace{1cm} \text{Conquer}
7. \(t \leftarrow \text{number of times } x \text{ appear } A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
Quicksort

quicksort(*A, n*)

1: if *n* ≤ 1 then return *A*
2: *x* ← lower median of *A*
3: *A_L* ← elements in *A* that are less than *x* \ Divide
4: *A_R* ← elements in *A* that are greater than *x* \ Divide
5: *B_L* ← quicksort(*A_L, A_L.size*) \ Conquer
6: *B_R* ← quicksort(*A_R, A_R.size*) \ Conquer
7: *t* ← number of times *x* appear in *A*
8: return the array obtained by concatenating *B_L*, the array containing *t* copies of *x*, and *B_R*

- Recurrence *T(n) ≤ 2T(n/2) + O(n)*
- Running time = *O(n lg n)*
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a *pivot randomly* and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

```plaintext
quicksort(A, n)

1: if n ≤ 1 then return A
2: \(x \leftarrow\) a random element of A (\(x\) is called a pivot)
3: \(A_L \leftarrow\) elements in A that are less than \(x\)  \(\|\) Divide
4: \(A_R \leftarrow\) elements in A that are greater than \(x\)  \(\|\) Divide
5: \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\)  \(\|\) Conquer
6: \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\)  \(\|\) Conquer
7: \(t \leftarrow\) number of times \(x\) appear A
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
```
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption: There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort\((A, n)\)

1: if \(n \leq 1\) then return \(A\)
2: \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3: \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\triangledown\) Divide
4: \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\triangledown\) Divide
5: \(B_L \leftarrow\) quicksort\((A_L, A_L\text{.size})\) \(\triangledown\) Conquer
6: \(B_R \leftarrow\) quicksort\((A_R, A_R\text{.size})\) \(\triangledown\) Conquer
7: \(t \leftarrow\) number of times \(x\) appear \(A\)
8: return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)

Lemma The expected running time of the algorithm is \(O(n \lg n)\).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm:** an algorithm that only uses “small” extra space.

```
64 82 75 29 38 45 94 69 25 76 15 92 37 17 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  82  75  29  38  45  94  69  25  76  15  92  37  64  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
  i

17 64 75 29 38 45 94 69 25 76 15 92 37 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
 17  37  75  29  38  45  94  69  25  76  15  92  64  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
QuickSort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm:** an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 64 & 92 & 75 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
5: if $i = j$ then break
6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$
7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$
8: if $i = j$ then break
9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$
10: return i
In-Place Implementation of Quick-Sort

quicksort(*A, ℓ, r*)

1. if \(ℓ \geq r \) then return
2. \(m \leftarrow \text{partition}(A, ℓ, r) \)
3. quicksort(*A, ℓ, m − 1*)
4. quicksort(*A, m + 1, r*)

- To sort an array *A* of size *n*, call quicksort(*A, 1, n*).

Note: We pass the array *A* by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 \\
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8 12 20 32 48
5  7  9 25 29
3  5  7  8
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 \\
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to **compare** two elements.
- We can not use “internal structures” of the elements.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1? \quad x \leq 2? \quad x = 3?$
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 1?</td>
<td>x ≤ 2?</td>
<td>x = 3?</td>
<td></td>
</tr>
</tbody>
</table>
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π?"
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.

You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_L \leftarrow$ elements in A that are less than x ▶ Divide
4: $A_R \leftarrow$ elements in A that are greater than x ▶ Divide
5: $B_L \leftarrow$ quicksort(A_L, A_L.size) ▶ Conquer
6: $B_R \leftarrow$ quicksort(A_R, A_R.size) ▶ Conquer
7: $t \leftarrow$ number of times x appear in A
8: return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Selection Algorithm with Median Finder

selection(\(A, n, i\))

1: \(\textbf{if } n = 1 \textbf{ then return } A\)
2: \(x \leftarrow \text{lower median of } A\)
3: \(A_L \leftarrow \text{elements in } A \text{ that are less than } x\) \(\triangleright \text{ Divide}\)
4: \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x\) \(\triangleright \text{ Divide}\)
5: \(\textbf{if } i \leq A_L.\text{size} \textbf{ then}\)
6: \(\textbf{return } \text{selection}(A_L, A_L.\text{size}, i)\) \(\triangleright \text{ Conquer}\)
7: \(\textbf{else if } i > n - A_R.\text{size} \textbf{ then}\)
8: \(\textbf{return } \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size}))\) \(\triangleright \text{ Conquer}\)
9: \(\textbf{else}\)
10: \(\textbf{return } x\)
Selection Algorithm with Median Finder

selection(A, n, i)

1: if \(n = 1 \) then return \(A \)
2: \(x \) ← lower median of \(A \)
3: \(A_L \) ← elements in \(A \) that are less than \(x \) \(\triangleright \) Divide
4: \(A_R \) ← elements in \(A \) that are greater than \(x \) \(\triangleright \) Divide
5: if \(i \leq A_L \cdot \text{size} \) then
6: return selection(\(A_L, A_L \cdot \text{size}, i \)) \(\triangleright \) Conquer
7: else if \(i > n - A_R \cdot \text{size} \) then
8: return selection(\(A_R, A_R \cdot \text{size}, i - (n - A_R \cdot \text{size}) \)) \(\triangleright \) Conquer
9: else
10: return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
Selection Algorithm with Median Finder

selection*(A, n, i)***

1. if *n* = 1 then return *A*
2. *x* ← lower median of *A*
3. *A*_L ← elements in *A* that are less than *x* ▷ Divide
4. *A*_R ← elements in *A* that are greater than *x* ▷ Divide
5. if *i* ≤ *A*_L.size then
7. else if *i* > *n* − *A*_R.size then
9. else
10. return *x*

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[
\text{selection}(A, n, i)
\]

1. \textbf{if} \(n = 1 \) \textbf{then} \textbf{return} \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \quad \text{▷ Divide}
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \quad \text{▷ Divide}
5. \textbf{if} \(i \leq A_L.\text{size} \) \textbf{then}
6. \quad \textbf{return} \text{ selection}(\(A_L, A_L.\text{size}, i \)) \quad \text{▷ Conquer}
7. \textbf{else if} \(i > n - A_R.\text{size} \) \textbf{then}
8. \quad \textbf{return} \text{ selection}(\(A_R, A_R.\text{size}, i - (n - A_R.\text{size}) \)) \quad \text{▷ Conquer}
9. \textbf{else}
10. \quad \textbf{return} \(x \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \(\triangleright \text{ Divide} \)
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \(\triangleright \text{ Divide} \)
5. if \(i \leq A_L.\text{size} \) then
6. \(\text{return selection}(A_L, A_L.\text{size}, i) \) \(\triangleright \text{ Conquer} \)
7. else if \(i > n - A_R.\text{size} \) then
8. \(\text{return selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \(\triangleright \text{ Conquer} \)
9. else
10. \(\text{return } x \)

\(\triangleright \text{ expected running time } = O(n) \)
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
 Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

Input: $(4, -5, 2, 3), (-5, 6, -3, 2)$

Output: $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots , 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: \hspace{1em} for $j \leftarrow 0$ to $n - 1$ do
4: \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Naïve Algorithm

polynomial-multiplication\((A, B, n) \)

1: let \(C[k] \leftarrow 0 \) for every \(k = 0, 1, 2, \cdots, 2n - 2 \)
2: \textbf{for } i \leftarrow 0 \textbf{ to } n - 1 \textbf{ do}
3: \hspace{1em} \textbf{for } j \leftarrow 0 \textbf{ to } n - 1 \textbf{ do}
4: \hspace{2em} C[i + j] \leftarrow C[i + j] + A[i] \times B[j]
5: \textbf{return } C

Running time: \(O(n^2) \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- **\(p(x) \):** degree of \(n - 1 \) (assume \(n \) is even)
- **\(p(x) = p_H(x)x^{n/2} + p_L(x), \)**
- **\(p_H(x), p_L(x) \):** polynomials of degree \(n/2 - 1 \)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x), \)
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ \ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \ \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \\
+ \left(multiply(p_H, q_L) + multiply(p_L, q_H) \right) \times x^{n/2} \\
+ multiply(p_L, q_L) \]

- Recurrence: \[T(n) = 4T(n/2) + O(n) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- **Recurrence:** \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[
pq = \left(pH \times \frac{n}{2} + pL \right) \left(qH \times \frac{n}{2} + qL \right) = pqHqH \times n + \left(pqHL + pqLH \right) \times \frac{n}{2} + pqLL = \left(pqH + pqL \right) \left(qH + qL \right) - pqHH - pqLL
\]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\bullet \quad p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[
\begin{align*}
\text{multiply}(p_H, q_H) &\quad \text{multiply}(p_L, q_L) \\
\text{multiply}(p, q) &\quad = r_H \times n + \left(\text{multiply}(p_H + p_L, q_H + q_L)\right) - r_H - r_L \\
\times n/2 + r_L \\
\text{Solving Recurrence:} \quad T(n) &\quad = 3T(n/2) + O(n) \\
\text{Then:} \quad T(n) &\quad = O(n\log_2 3) = O(n^{1.585})
\end{align*}
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[
r_H = \text{multiply}(p_H, q_H) \\
r_L = \text{multiply}(p_L, q_L)
\]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
multiply(A, B, n)
\]

1: if \(n = 1 \) then return \((A[0]B[0])\)
2: \(A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3: \(B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4: \(C_L \leftarrow multiply(A_L, B_L, n/2) \)
5: \(C_H \leftarrow multiply(A_H, B_H, n/2) \)
6: \(C_M \leftarrow multiply(A_L + A_H, B_L + B_H, n/2) \)
7: \(C \leftarrow \) array of \((2n - 1)\) 0’s
8: for \(i \leftarrow 0 \) to \(n - 2 \) do
9: \(C[i] \leftarrow C[i] + C_L[i] \)
10: \(C[i + n] \leftarrow C[i + n] + C_H[i] \)
11: \(C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12: return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide:** Divide the points into two halves via a vertical line
- **Conquer:** Solve two sub-instances recursively
- **Combine:** Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider \(O(1) \) boxes nearby

Time for combine = \(O(n) \) (many technicalities omitted)

Recurrence:

\[
T(n) = 2T(n/2) + O(n)
\]

Running time:

\(O(n \log n) \)
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby

Recurrence:
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Running time:
$$O(n \lg n)$$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication (A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

running time $= O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: $\text{matrix-multiplication}(A, B, n)$

1: $\text{for } i \leftarrow 1 \text{ to } n \text{ do}$
2: $\text{for } j \leftarrow 1 \text{ to } n \text{ do}$
3: $\quad C[i, j] \leftarrow 0$
4: $\text{for } k \leftarrow 1 \text{ to } n \text{ do}$
5: $\quad C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: $\text{return } C$

Running time = $O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. **for** $i \leftarrow 1$ to n **do**
2. **for** $j \leftarrow 1$ to n **do**
3. $C[i, j] \leftarrow 0$
4. **for** $k \leftarrow 1$ to n **do**
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. **return** C

- running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\]
\[
B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- matrix_multiplication\((A, B)\) recursively calls
 matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), …

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels

Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

\(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T\left(\frac{n}{2}\right) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

\[
\text{Total running time at level } i = n \times 3^i
\]

\[
\text{Index of last level} = \log_2 n
\]

\[
\text{Total running time} = \sum_{i=0}^{\log_2 n} (3^2)^i n = O(n (3^2)^{\log_2 n}) = O(n^\log_3 3) = O(n^{\log_3 3})
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Total running time at level i?

$$\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

\[
\begin{align*}
T(n) &= 3T(n/2) + O(n) \\
\text{Total running time at level } i &\quad \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \\
\text{Index of last level} &\quad \lg_2 n \\
\text{Total running time} &\quad \text{?}
\end{align*}
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

Total running time at level \(i \)
- \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

Index of last level
- \(\lg_2 n \)

Total running time

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]

Total running time at level \(i \) is

\[T(n) = 3^i n^2 \times 3 = 3^{i+1} n^2 \]

Index of last level is \(\log_2 n \)

Total running time is

\[\sum_{i=0}^{\log_2 n} 3^{i+1} n^2 = O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
T(n) &= 3T(n/2) + O(n^2) \\
\text{Total running time at level } i &= \left(\frac{n}{2}\right)^2 \times 3^i \\
\text{Index of last level} &= \log_2 n \\
\text{Total running time} &= \sum_{i=0}^{\log_2 n} \left(3^i \left(\frac{n}{2}\right)^2\right) = O(n^2).
\end{align*}
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Diagram of recursion tree with nodes labeled as follows:
- \(n^2 \)
- \((n/2)^2 \)
- \((n/4)^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
\text{n}^2 & \\
\text{(n/2)}^2 & \\
\frac{n}{4}^2 & \frac{n}{4}^2 \frac{n}{4}^2 & \frac{n}{4}^2 \frac{n}{4}^2 \frac{n}{4}^2 & \frac{n}{4}^2 \frac{n}{4}^2 \frac{n}{4}^2 \\
\left(\frac{n}{8}\right)^2 & \left(\frac{n}{8}\right)^2 \left(\frac{n}{8}\right)^2 & \ldots \ldots \ldots \ldots \ldots \ldots \\
\end{align*}
\]

- Total running time at level \(i \)?

\[
\sum_{i=0}^{\log_2 n} (3^i \cdot n^2) = \Theta(n^2)
\]
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \((\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2\)
- Index of last level?

\[\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2) \]
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

![Recursion Tree Diagram]

- Total running time at level i: $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$
- Index of last level: $\lg_2 n$

Total running time: $\sum_{i=0}^{\lg_2 n} (\frac{3}{4})^i n^2 = O(n^2)$
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

![Recursion Tree Diagram]

- Total running time at level i: $(n/2^i)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level: $\log_2 n$
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level? \(\lg_2 n \)

- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = \ldots
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
\text{Total running time at level } i & : (\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2 \\
\text{Index of last level} & : \lg_2 n \\
\text{Total running time} & : \\
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 &= O(n^2).
\end{align*}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
\quad \text{if } c < \lg_b a \\
\quad \text{if } c = \lg_b a \\
\quad \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1\), \(b > 1\), \(c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
 & \text{if } c = \lg_b a \\
 & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem \[T(n) = aT(n/b) + O(n^c), \] where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg b a}) & \text{if } c < \lg b a \\
O(n^c \lg n) & \text{if } c = \lg b a \\
O(n^c) & \text{if } c > \lg b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^c \lg n) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: $T(n) = T(n/2) + O(1)$. Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
 O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
 O(n^c \lg n) & \text{if } c = \lg_b a \\
 O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\log_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\log n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

1 node

\[n^c \]

\(a \) nodes

\[(n/b)^c \]

\[(n/b)^c \]

\(a^2 \) nodes

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\[(n/b^2)^c \]

\(a^3 \) nodes

\[(n/b^3)^c \]

\[(n/b^3)^c \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

1 node

\[n^c \]

\[\frac{a}{b^c} n^c \]

1 node

\[(n/b)^c \]

\[(n/b)^c \]

\[(\frac{a}{b^c})^2 n^c \]

1 node

\[\frac{n}{b^3} \]

\[(\frac{a}{b^c})^3 n^c \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

\begin{align*}
1 \text{ node} & \quad n^c \\
 a \text{ nodes} & \quad (n/b)^c \\
 a^2 \text{ nodes} & \quad (n/b^2)^c \\
 a^3 \text{ nodes} & \quad (n/b^3)^c
\end{align*}

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

1 node

\[n^c \]

\[\frac{a}{b^c} n^c \]

- \(a \) nodes

\[(n/b)^c \]

- \(a^2 \) nodes

\[(n/b^2)^c \]

- \(a^3 \) nodes

\[\left(\frac{n}{b^3} \right)^c \]

- \(c < \lg_b a \): bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \(c = \lg_b a \): all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- **c < \lg_b a**: bottom-level dominates: \((\frac{a}{b^c})^{\lg_b n} n^c = n^{\lg_b a}\)
- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n)\)
- **c > \lg_b a**: top-level dominates: \(O(n^c)\)
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots

\(n \)-th Fibonacci Number

Input: integer \(n \geq 0 \)

Output: \(F_n \)
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)
1: if $n = 0$ return 0
2: if $n = 1$ return 1
3: return Fib(n − 1) + Fib(n − 2)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return $\text{Fib}(n - 1) + \text{Fib}(n - 2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

• Dynamic Programming

Dynamic Programming

Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \quad $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\ldots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time?
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.

Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
Running time $= O(\log n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\log n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\log n)$ basic arithmetic operations on integers.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

Write down recurrence for running time
Solve recurrence using master theorem
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \ldots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋯:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋯:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]
- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time