Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1: \textbf{if} \ n = 1 \ \textbf{then} \\
2: \quad \textbf{return} \ A \\
3: \textbf{else} \\
4: \quad B \leftarrow \text{merge-sort}\left(A\left[1..\lfloor n/2 \rfloor\right], \lfloor n/2 \rfloor\right) \\
5: \quad C \leftarrow \text{merge-sort}\left(A\left[\lceil n/2 \rceil + 1..n\right], \lceil n/2 \rceil\right) \\
6: \quad \textbf{return} \ \text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
merge-sort\((A, n)\)

1: \textbf{if} \; n = 1 \; \textbf{then}
2: \textbf{return} \; A
3: \textbf{else}
4: \(B \leftarrow \text{merge-sort}\left(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil\right)\)
5: \(C \leftarrow \text{merge-sort}\left(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor\right)\)
6: \textbf{return} \; \text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $= O(n \log n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

Solving this recurrence, we have \(T(n) = O(n \log n) \) (we shall show how later).
Running Time for Merge-Sort Using Recurrence

• \(T(n) = \text{running time for sorting} \ n \ \text{numbers, then} \)

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

• With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

• Even simpler: \(T(n) = 2T(n/2) + O(n). \) (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)
Running Time for Merge-Sort Using Recurrence

- \(T(n) = \) running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: \(T(n) = 2T(n/2) + O(n) \). (Implicit assumption: \(T(n) = O(1) \) if \(n \) is at most some constant.)

- Solving this recurrence, we have \(T(n) = O(n \lg n) \) (we shall show how later)
Outline

1. Divide-and-Conquer

2. Counting Inversions

3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4. Polynomial Multiplication

5. Other Classic Algorithms using Divide-and-Conquer

6. Solving Recurrences

7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array \(A \) of \(n \) integers, an inversion in \(A \) is a pair \((i, j)\) of indices such that \(i < j \) and \(A[i] > A[j] \).

Counting Inversions

Input: an sequence \(A \) of \(n \) numbers
Output: number of inversions in \(A \)
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

- **Input:** an sequence A of n numbers
- **Output:** number of inversions in A

Example:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>15</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

```
  10  8  15  9  12
  8  9 10  12 15
```

4 inversions (for convenience, using numbers, not indices):

- $(10, 8)$
- $(10, 9)$
- $(15, 9)$
- $(15, 12)$
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
10  8  15  9  12
  8   9  10  12  15
```

- 4 inversions (for convenience, using numbers, not indices):
 $(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(\(A, n\))

1: \(c \leftarrow 0\)
2: for every \(i \leftarrow 1\) to \(n - 1\) do
3: for every \(j \leftarrow i + 1\) to \(n\) do
4: if \(A[i] > A[j]\) then \(c \leftarrow c + 1\)
5: return \(c\)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\text{#invs}(A) = \text{#invs}(B) + \text{#invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

• Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p + 1..n]$

$\#\text{invs} (A) = \#\text{invs} (B) + \#\text{invs} (C) + m$

$m = \left| \{(i, j) : B[i] > C[j]\} \right|$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{ccccccc}
3 & 8 & 12 & 20 & 32 & 48 & \\
\end{array} \quad \text{total}= 0$

$C: \begin{array}{ccccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
total = 0

C: 5 7 9 25 29
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29 \\
\text{total} &= 0
\end{align*}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

3 8 12 20 32 48

5 7 9 25 29

3 5

$+0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

$\text{total} = 0$

B: C: $+0$

3 5
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48\]

C: \[5 \quad 7 \quad 9 \quad 25 \quad 29\]

\[+0\]

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$

+0

3 5 7
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2$

$3 5 7 8$

$\text{total} = 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0$ $+2$

3 5 7 8

Total $= 2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 2$

$\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array}$

$+0 \quad +2$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

\[\text{total} = 2 \]

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array} \]

\[+0 +2 \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

$\text{total} = 5$

$+$ 0

$+$ 2

$+$ 3

\[\begin{array}{cccccc} 3 & 5 & 7 & 8 & 9 & 12 \end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 & \\
\end{array}
\]

total = 5

$+0$ $+2$ $+3$

3 5 7 8 9 12
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[3 \ 8 \ 12 \ 20 \ 32 \ 48\]

C: \[5 \ 7 \ 9 \ 25 \ 29\]

\[+0\quad +2\quad +3\quad +3\]

\[3 \ 5 \ 7 \ 8 \ 9 \ 12 \ 20\]

\text{total}= 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\] \hspace{1cm} \text{total} = 8

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>B:</th>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

$\text{total} = 8$

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$$

$$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$$

$\text{total} = 8$

$\begin{array}{ccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

- B: 3 8 12 20 32 48
- C: 5 7 9 25 29

Total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$+0 +2 +3 +3$

$\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}$

$\text{total} = 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} \]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array} \]

total = 13

\[\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
+0 & +2 & +3 & +3 & +5 \\
\end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

$\text{total}= 13$

$+0 +2 +3 +3 +5$

\[
\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48
\end{array}\]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29
\end{array}\]

\[\text{total} = 18\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$$B: \begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \\ \end{array}$$

$$C: \begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 & 0 \\ +0 & +2 & +3 & +3 & +5 & +5 \\ \hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \end{array}$$

$\text{total} = 18$
Procedure that merges \(B\) and \(C\) and counts inversions between \(B\) and \(C\) at the same time

def merge-and-count(B, C, n1, n2):
 count = 0;
 A = array of size \(n_1 + n_2\); i = 1; j = 1
 while i \leq n_1 or j \leq n_2 do
 if j > n_2 or (i \leq n_1 and B[i] \leq C[j]) then
 A[i + j - 1] = B[i]; i = i + 1
 count = count + (j - 1)
 else
 A[i + j - 1] = C[j]; j = j + 1
 return (A, count)
Sort and Count Inversions in \(A \)

- A procedure that returns the sorted array of \(A \) and counts the number of inversions in \(A \):

sort-and-count\((A, n)\)

1: if \(n = 1 \) then
2: return \((A, 0)\)
3: else
4: \((B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)\)
5: \((C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lfloor n/2 \rfloor)\)
6: \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7: return \((A, m_1 + m_2 + m_3)\)
A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1. **if** $n = 1$ **then**
2. **return** $(A, 0)$
3. **else**
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lceil n/2 \rceil)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. **return** $(A, m_1 + m_2 + m_3)$

- **Divide:** trivial
- **Conquer:** 4, 5
- **Combine:** 6, 7
sort-and-count(A, n)

1: if $n = 1$ then
2: return $(A, 0)$
3: else
4: $(B, m_1) \leftarrow$ sort-and-count($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $(C, m_2) \leftarrow$ sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: $(A, m_3) \leftarrow$ merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count(A, n)

1: if $n = 1$ then
2: return ($A, 0$)
3: else
4: (B, m_1) \leftarrow sort-and-count($A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor$)
5: (C, m_2) \leftarrow sort-and-count($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6: (A, m_3) \leftarrow merge-and-count($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)
7: return ($A, m_1 + m_2 + m_3$)

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

```
29 82 75 64 38 45 94 69 25 76 15 92 37 17 85
29 38 45 25 15 37 17 64 82 75 94 92 69 76 85
```
Assumption

We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Assumption

We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th></th>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
quicksort(A, n)

1: if $n \leq 1$ then return A
2: $x \gets$ lower median of A
3: $A_L \gets$ array of elements in A that are less than x \ Divide
4: $A_R \gets$ array of elements in A that are greater than x \ Divide
5: $B_L \gets$ quicksort(A_L, length of A_L) \ Conquer
6: $B_R \gets$ quicksort(A_R, length of A_R) \ Conquer
7: $t \gets$ number of times x appear in A
8: return concatenation of B_L, t copies of x, and B_R
Quicksort

quicksort(A, n)

1: if n ≤ 1 then return A
2: x ← lower median of A
3: AL ← array of elements in A that are less than x
4: AR ← array of elements in A that are greater than x
5: BL ← quicksort(AL, length of AL) \ Divide
6: BR ← quicksort(AR, length of AR) \ Divide
7: t ← number of times x appear A
8: return concatenation of BL, t copies of x, and BR

\begin{itemize}
 \item Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
\end{itemize}
Quicksort

quicksort(A, n)

1. if \(n \leq 1 \) then return A
2. \(x \leftarrow \) lower median of A
3. \(A_L \leftarrow \) array of elements in A that are less than \(x \) \quad \| \quad \text{Divide}
4. \(A_R \leftarrow \) array of elements in A that are greater than \(x \) \quad \| \quad \text{Divide}
5. \(B_L \leftarrow \) quicksort(\(A_L \), length of \(A_L \)) \quad \| \quad \text{Conquer}
6. \(B_R \leftarrow \) quicksort(\(A_R \), length of \(A_R \)) \quad \| \quad \text{Conquer}
7. \(t \leftarrow \) number of times \(x \) appear A
8. return concatenation of \(B_L \), \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \lg n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
quicksort\((A, n)\)

1. **if** \(n \leq 1 \) **then return** \(A \)
2. \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3. \(A_L \leftarrow \) array of elements in \(A \) that are less than \(x \) \(\text{\textbackslash \textbackslash \text{Divide}} \)
4. \(A_R \leftarrow \) array of elements in \(A \) that are greater than \(x \) \(\text{\textbackslash \textbackslash \text{Divide}} \)
5. \(B_L \leftarrow \) quicksort\((A_L, \text{length of } A_L)\) \(\text{\textbackslash \textbackslash \text{Conquer}} \)
6. \(B_R \leftarrow \) quicksort\((A_R, \text{length of } A_R)\) \(\text{\textbackslash \textbackslash \text{Conquer}} \)
7. \(t \leftarrow \) number of times \(x \) appear in \(A \)
8. **return** concatenation of \(B_L \), \(t \) copies of \(x \), and \(B_R \)
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort\((A, n) \)

1: \(\textbf{if} \ n \leq 1 \ \textbf{then return} \ A \)
2: \(x \leftarrow \text{a random element of } A \) \((x \text{ is called a pivot})\)
3: \(A_L \leftarrow \text{array of elements in } A \text{ that are less than } x \) \OLLOW Divide
4: \(A_R \leftarrow \text{array of elements in } A \text{ that are greater than } x \) \OLLOW Divide
5: \(B_L \leftarrow \text{quicksort}(A_L, \text{length of } A_L) \) \OLLOW Conquer
6: \(B_R \leftarrow \text{quicksort}(A_R, \text{length of } A_R) \) \OLLOW Conquer
7: \(t \leftarrow \text{number of times } x \text{ appear } A \)
8: \(\textbf{return} \ \text{concatenation of } B_L, t \text{ copies of } x, \text{ and } B_R \)

Lemma \(\text{The expected running time of the algorithm is } O(n \lg n). \)
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
64  82  75  29  38  45  94  69  25  76  15  92  37  17  85
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
64 82 75 29 38 45 94 69 25 76 15 92 37 17 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>82</td>
<td>75</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
<td>64</td>
</tr>
</tbody>
</table>

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.

\[
\begin{array}{ccccccccccccccc}
17 & 64 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 37 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

| 17 | 64 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 82 | 85 |

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 37 & 75 & 29 & 38 & 45 & 94 & 69 & 25 & 76 & 15 & 92 & 64 & 82 & 85 \\
\end{array}
\]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

\[
i, j
\]

<table>
<thead>
<tr>
<th>17</th>
<th>37</th>
<th>15</th>
<th>29</th>
<th>38</th>
<th>45</th>
<th>25</th>
<th>64</th>
<th>69</th>
<th>76</th>
<th>94</th>
<th>92</th>
<th>75</th>
<th>82</th>
<th>85</th>
</tr>
</thead>
</table>
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1: $p \leftarrow \text{random integer between } \ell \text{ and } r$, swap $A[p]$ and $A[\ell]$

2: $i \leftarrow \ell$, $j \leftarrow r$

3: while true do

5: if $i = j$ then break

6: swap $A[i]$ and $A[j]$; $i \leftarrow i + 1$

7: while $i < j$ and $A[i] < A[j]$ do $i \leftarrow i + 1$

8: if $i = j$ then break

9: swap $A[i]$ and $A[j]$; $j \leftarrow j - 1$

10: return i
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1: if ℓ ≥ r then return
2: \(m \leftarrow \text{partition}(A, \ell, r) \)
3: quicksort(A, ℓ, m − 1)
4: quicksort(A, m + 1, r)

To sort an array \(A \) of size \(n \), call quicksort\((A, 1, n)\).

Note: We pass the array \(A \) by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

3 8 12 20 32 48
5 7 9 25 29
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3  8  12  20  32  48
5  7  9  25  29
3
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{bmatrix}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5
\end{bmatrix}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{ccc}
3 & 5 & 7 \\
\end{array}
\]
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8 12 20 32 48
5  7  9 25 29
3  5  7  8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29
```
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We cannot use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

<table>
<thead>
<tr>
<th>$x = 1?$</th>
<th>$x \leq 2?$</th>
<th>$x = 3?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1$?

$x \leq 2$?

$x = 3$?

$1 \quad 2 \quad 3 \quad 4$
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

\[x = 1?\]
\[x \leq 2?\]
\[x = 3?\]
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Binary search tree diagram]
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

Sorting solves the problem in time $O(n \lg n)$.

Our goal: $O(n)$ running time
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

• Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \log n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort(*A, n*)

1. **if** *n* ≤ 1 **then return** *A*
2. *x* ← lower median of *A*
3. *A_L* ← elements in *A* that are less than *x* ▷ Divide
4. *A_R* ← elements in *A* that are greater than *x* ▷ Divide
7. *t* ← number of times *x* appear *A*
8. **return** the array obtained by concatenating *B_L*, the array containing *t* copies of *x*, and *B_R*
Selection Algorithm with Median Finder

selection(*A*, *n*, *i*)

1. **if** *n* = 1 **then** return *A*
2. *x* ← lower median of *A*
3. *A_L* ← elements in *A* that are less than *x* ▷ Divide
4. *A_R* ← elements in *A* that are greater than *x* ▷ Divide
5. **if** *i* ≤ *A_L*.size **then**
6. return **selection**(*A_L*, *A_L*.size, *i*) ▷ Conquer
7. **else if** *i* > *n* − *A_R*.size **then**
8. return **selection**(*A_R*, *A_R*.size, *i* − (*n* − *A_R*.size)) ▷ Conquer
9. **else**
10. return *x*
Selection Algorithm with Median Finder

```latex
\begin{algorithm}
\caption{selection($A, n, i$)}
\begin{algorithmic}[1]
\State 1: \textbf{if} $n = 1$ \textbf{then} \textbf{return} $A$
\State 2: $x \leftarrow$ lower median of $A$
\State 3: $A_L \leftarrow$ elements in $A$ that are less than $x$ \hfill $\triangleright$ Divide
\State 4: $A_R \leftarrow$ elements in $A$ that are greater than $x$ \hfill $\triangleright$ Divide
\State 5: \textbf{if} $i \leq A_L$.size \textbf{then}
\State 6: \textbf{return} selection($A_L, A_L$.size, $i$) \hfill $\triangleright$ Conquer
\State 7: \textbf{else if} $i > n - A_R$.size \textbf{then}
\State 8: \textbf{return} selection($A_R, A_R$.size, $i - (n - A_R$.size)) \hfill $\triangleright$ Conquer
\State 9: \textbf{else}
\State 10: \textbf{return} $x$
\end{algorithmic}
\end{algorithm}
```

- Recurrence for selection: $T(n) = T(n/2) + O(n)$
Selection Algorithm with Median Finder

\textbf{selection}(A, n, i)

1: \textbf{if} \ n = 1 \ \textbf{then return} \ A
2: \ x \leftarrow \text{lower median of } A \quad \triangleright \text{Divide}
3: \ A_L \leftarrow \text{elements in } A \text{ that are less than } x \quad \triangleright \text{Divide}
4: \ A_R \leftarrow \text{elements in } A \text{ that are greater than } x \quad \triangleright \text{Divide}
5: \ \textbf{if} \ i \leq A_L.\text{size} \ \textbf{then}
6: \ \textbf{return} \ \text{selection}(A_L, A_L.\text{size}, i) \quad \triangleright \text{Conquer}
7: \ \textbf{else if} \ i > n - A_R.\text{size} \ \textbf{then}
8: \ \textbf{return} \ \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \triangleright \text{Conquer}
9: \ \textbf{else}
10: \ \textbf{return} \ x

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1. \(\text{if } n = 1 \text{ then return } A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \(\triangleright \) Divide
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \(\triangleright \) Divide
5. \(\text{if } i \leq A_L.\text{size} \text{ then} \)
6. \(\text{return selection}(A_L, A_L.\text{size}, i) \) \(\triangleright \) Conquer
7. \(\text{else if } i > n - A_R.\text{size} \text{ then} \)
8. \(\text{return selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \(\triangleright \) Conquer
9. \(\text{else} \)
10. \(\text{return } x \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1: if \(n = 1 \) then return \(A \)
2: \(x \leftarrow \text{random element of } A \) (called pivot)
3: \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) ▶ Divide
4: \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) ▶ Divide
5: if \(i \leq A_L.\text{size} \) then
6: return \(\text{selection}(A_L, A_L.\text{size}, i) \) ▶ Conquer
7: else if \(i > n - A_R.\text{size} \) then
8: return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) ▶ Conquer
9: else
10: return \(x \)

- expected running time = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20
\]
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$

$= 6x^6 - 9x^5 + 18x^4 - 15x^3$

$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$

$- 10x^4 + 15x^3 - 30x^2 + 25x$

$+ 8x^3 - 12x^2 + 24x - 20$

$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

$$= 6x^6 - 9x^5 + 18x^4 - 15x^3$$

$$+ 4x^5 - 6x^4 + 12x^3 - 10x^2$$

$$- 10x^4 + 15x^3 - 30x^2 + 25x$$

$$+ 8x^3 - 12x^2 + 24x - 20$$

$$= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20$$

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \ldots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: for $j \leftarrow 0$ to $n - 1$ do
4: $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1: let $C[k] \leftarrow 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2: for $i \leftarrow 0$ to $n - 1$ do
3: for $j \leftarrow 0$ to $n - 1$ do
4: $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5: return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]

\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \\
+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \\
+ \text{multiply}(p_L, q_L)
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \[T(n) = 4T(n/2) + O(n) \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \]
\[+ \left(multiply(p_H, q_L) + multiply(p_L, q_H) \right) \times x^{n/2} \]
\[+ multiply(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
\[\text{multiply}(p, q) = r_H \times x^n + \text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \times x^{n/2} + r_L \]

Solving Recurrence:
\[T(n) = 3T(n/2) + O(n) \]
\[T(n) = O(n \log_2 3) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} \\
+ r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
\text{multiply}(A, B, n) \\
1: \text{ if } n = 1 \text{ then return } (A[0]B[0]) \\
2: \quad A_L \leftarrow A[0..n/2-1], A_H \leftarrow A[n/2..n-1] \\
3: \quad B_L \leftarrow B[0..n/2-1], B_H \leftarrow B[n/2..n-1] \\
4: \quad C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \\
5: \quad C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \\
6: \quad C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \\
7: \quad C \leftarrow \text{array of } (2n-1) \text{ 0's} \\
8: \text{ for } i \leftarrow 0 \text{ to } n-2 \text{ do} \\
9: \quad C[i] \leftarrow C[i] + C_L[i] \\
10: \quad C[i+n] \leftarrow C[i+n] + C_H[i] \\
11: \quad C[i+n/2] \leftarrow C[i+n/2] + C_M[i] - C_L[i] - C_H[i] \\
12: \text{ return } C
\]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
For each point, only need to consider \(O(1) \) boxes nearby
Time for combine = \(O(n) \) (many technicalities omitted)

Recurrence:
\[
T(n) = 2T(n/2) + O(n)
\]

Running time:
\(O(n \lg n) \)
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
time for combine $= O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
time for combine $= O(n)$ (many technicalities omitted)
Recurrence: $T(n) = 2T(n/2) + O(n)$
Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6: return C

running time = $O(n^3)$
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two \(n \times n \) matrices \(A \) and \(B \)
Output: \(C = AB \)

Naive Algorithm: \text{matrix-multiplication}(A, B, n)

1: for \(i \leftarrow 1 \) to \(n \) do
2: \hspace{1em} for \(j \leftarrow 1 \) to \(n \) do
3: \hspace{2em} \(C[i, j] \leftarrow 0 \)
4: \hspace{1em} for \(k \leftarrow 1 \) to \(n \) do
5: \hspace{2em} \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)
6: return \(C \)

- running time = \(O(n^3) \)
Try to Use Divide-and-Conquer

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- matrix_multiplication\((A, B)\) recursively calls matrix_multiplication\((A_{11}, B_{11})\), matrix_multiplication\((A_{12}, B_{21})\), ...
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\quad \text{\(n/2\)}
\quad B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\quad \text{\(n/2\)}
\]

\[C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}\]

- **matrix_multiplication**(*A, B*) recursively calls
 - **matrix_multiplication**(*A_{11}, B_{11})*,
 - **matrix_multiplication**(*A_{12}, B_{21})*,
 \[\ldots\]

- **Recurrence for running time:** \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[T(n) = 2T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

- Each level takes running time \(O(n) \)
- There are \(O(\log n) \) levels
- Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Index of last level: $\lg_2 n$

Total running time: $\sum_{i=0}^{\lg_2 n} 3^i n = O(n \lg_2 n) = O(n \log_3 n)$.
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

```
      n
  n/2     n/2     n/2
```

Total running time at level i?

Index of last level?

Total running time?

$\sum_{i=0}^{\log_2 n} 3^i n = \Theta(n^\log_2 3)$

$= \Theta(n^{\log_2 3})$.

Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion-Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = (\frac{3}{2})^i n \)

- Index of last level? \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Total running time at level i: $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$

Index of last level: $\lg_2 n$

Total running time:

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{array}{c}
\text{n}^2 \\
\end{array}
\]

Total running time at level \(i \)?

Index of last level? \(\lg 2 n \)

Total running time? \(\sum_{i=0}^{\lg 2 n} \frac{3^i}{4} n^2 = O(n^2) \)
Recursion-Tree Method

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)?
- Index of last level?
- Total running time?

\(\sum_{i=0}^{\log_2 n} 3^i n^2 = O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \) is \(n^2 \times 3^i \)
- Index of last level is \(\log_2 n \)
- Total running time is \(\sum_{i=0}^{\log_2 n} 3^i \cdot n^2 = O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)?

\[
T(n) = 3^i T\left(\frac{n}{2^i}\right) + \sum_{k=0}^{i} \frac{3^k}{2^k} \cdot O(n^2)
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
T(n) &= 3T(n/2) + O(n^2) \\
&= 3 \left(\frac{n}{2} \right)^2 + O\left(\left(\frac{n}{2} \right)^2 \right) \\
&= 3 \left(\frac{n^2}{4} \right) + O\left(\left(\frac{n}{2} \right)^2 \right) \\
&= \frac{3n^2}{4} + O\left(\left(\frac{n}{2} \right)^2 \right)
\end{align*}
\]

Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

Index of last level? \(\log_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{align*}
T(n) &= 3T(n/2) + O(n^2) \\
\text{Total running time at level } i &= (\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2 \\
\text{Index of last level?} &= \lg_2 n \\
\text{Total running time?}
\end{align*}
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{array}{c}
n^2 \\
(n/2)^2 \\
\frac{n}{4}^2 \quad \frac{n}{4}^2 \quad \frac{n}{4}^2 \\
\frac{n}{8}^2 \quad \frac{n}{8}^2 \quad \frac{n}{8}^2 \\
\vdots \\
\end{array}
\]

- Total running time at level \(i \)? \((\frac{n}{2^i})^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2\)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =
\]

\[
= O(n^2)
\]
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n^2)$

Total running time at level i? $(\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2$

Index of last level? $\log_2 n$

Total running time?

$$\sum_{i=0}^{\log_2 n} (\frac{3}{4})^i n^2 = O(n^2).$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
The Master Theorem states that for a recurrence of the form

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

where \(a \geq 1 \), \(b > 1 \), and \(c \geq 0 \) are constants, then,

\[T(n) = \begin{cases}
O(n \lg^k n) & \text{if } c < \lg b/a \\
O(n^c \lg^k n) & \text{if } c = \lg b/a \\
O(n^c) & \text{if } c > \lg b/a
\end{cases} \]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
\text{if } c < \log_b a \\
\text{if } c = \log_b a \\
\text{if } c > \log_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1\), \(b > 1\), \(c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
T(n) & \text{if } c = \lg_b a \\
T(n) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^2) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem
$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem: $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

\(\text{Ex: } T(n) = 4T(n/2) + O(n^2). \) \(\text{Which Case?} \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
 O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
 O(n^c \log n) & \text{if } c = \lg_b a \\
 O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). **Case 2.**
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lfloor \lg_b a \rfloor}) & \text{if } c < \lfloor \lg_b a \rfloor \\
O(n^c \lg n) & \text{if } c = \lfloor \lg_b a \rfloor \\
O(n^c) & \text{if } c > \lfloor \lg_b a \rfloor
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^\lg_b a) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[\frac{n}{b^3}^c \]

1 node

\[\frac{n}{b^2}^c \]

\[\frac{n}{b}^c \]

\[n^c \]

\[n^c \]

\[n^c \]

\[n^c \]

\[\frac{a}{b^c} n^c \]

\[\frac{a}{b^c}^2 n^c \]

\[\frac{a}{b^c}^3 n^c \]

\[\frac{a}{b^c}^2 n^c \]

\[\frac{a}{b^c}^3 n^c \]

\[\frac{a}{b^c}^4 n^c \]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- 1 node
 - \(n^c \)
- \(a \) nodes
 - \((n/b)^c \)
 - \((n/b)^c \)
- \(a^2 \) nodes
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)
 - \((n/b^2)^c \)
- \(a^3 \) nodes
 - \((n/b^3)^c \)
 - \((n/b^3)^c \)

- \(c < \lg_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a} \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **1 node**
 - \(n^c \)

- **a nodes**
 - \((n/b)^c\)

- **a^2 nodes**
 - \((n/b^2)^c\)

- **a^3 nodes**
 - \((n/b^3)^c\)
 - \([(n/b^3)^c]^3\)
 - \([(n/b^3)^c]^3\)
 - \([(n/b^3)^c]^3\)

- **c < \lg_b a**: bottom-level dominates: \((a/b^c)^{\lg_b n} \cdot n^c = n^{\lg_b a}\)

- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n)\)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **c < \lg_b a**: bottom-level dominates: \((\frac{a}{b^c})^{\lg_b n} n^c = n^{\lg_b a} \)
- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
- **c > \lg_b a**: top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots

\(n \)-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n : Stupid Divide-and-Conquer Algorithm

<table>
<thead>
<tr>
<th>Fib(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if $n = 0$ return 0</td>
</tr>
<tr>
<td>2: if $n = 1$ return 1</td>
</tr>
<tr>
<td>3: return Fib($n - 1$) + Fib($n - 2$)</td>
</tr>
</tbody>
</table>

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

Running time is at least $\Omega(F_n)$
F_n is exponential in n
Computing \(F_n \): Stupid Divide-and-Conquer Algorithm

Fib\((n)\)
1: if \(n = 0 \) return 0
2: if \(n = 1 \) return 1
3: return Fib\((n - 1) + Fib(n - 2)\)

Q: Is the running time of the algorithm polynomial or exponential in \(n \)?

A: Exponential
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return $\text{Fib}(n - 1) + \text{Fib}(n - 2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5: return $F[n]$

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. **for** $i \leftarrow 2$ **to** n **do**
4. \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. **return** $F[n]$

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\ldots
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2. \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)
3. \(R \leftarrow R \times R \)
4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5. return \(R \)

Fib(n)

1. if \(n = 0 \) then return 0
2. \(M \leftarrow \text{power}(n - 1) \)
3. return \(M[1][1] \)
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow power(\lfloor n/2 \rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow power(n - 1)$
3: return $M[1][1]$

● Recurrence for running time?
power(n)

1: if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

Recurrence for running time? $T(n) = T(n/2) + O(1)$
power(n)

1: if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2: $R \leftarrow \text{power}([n/2])$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5: return R

Fib(n)

1: if $n = 0$ then return 0
2: $M \leftarrow \text{power}(n - 1)$
3: return $M[1][1]$

• Recurrence for running time? $T(n) = T(n/2) + O(1)$
• $T(n) = O(\lg n)$
Running time = $O(\lg n)$: We Cheated!

How many bits do we need to represent $F(n)$?

$\Theta(n)$

We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time. Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.
Running time $= O(lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(lg n)$

Fixing the Problem

To compute F_n, we need $O(lg n)$ basic arithmetic operations on integers
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

Write down recurrence for running time
Solve recurrence using master theorem
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · ·:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ...:
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O\left(n \lg_2^3 n\right) \]

- Matrix Multiplication:
 \[T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O\left(n \lg_2^7 n\right) \]

Usually, designing better algorithm for "combine" step is key to improve running time.
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ···:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time