CSE 431/531: Algorithm Analysis and Design (Fall 2022)
Divide-and-Conquer – Recitation

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \).
 \(T(n) = O(\) \)

2. \(T(n) = 3T(n/3) + O(n) \).
 \(T(n) = O(\) \)

3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \).
 \(T(n) = O(\) \)

4. \(T(n) = 8T(n/2) + O(n^3) \).
 \(T(n) = O(\) \)
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \).
 \(T(n) = O(n^{\log_3 4}) \)

2. \(T(n) = 3T(n/3) + O(n) \).
 \(T(n) = O(\quad) \)

3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \).
 \(T(n) = O(\quad) \)

4. \(T(n) = 8T(n/2) + O(n^3) \).
 \(T(n) = O(\quad) \)
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \).
 \(T(n) = O(n^{\log_3 4}) \)

2. \(T(n) = 3T(n/3) + O(n) \).
 \(T(n) = O(n \log n) \)

3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \).
 \(T(n) = O(\quad) \)

4. \(T(n) = 8T(n/2) + O(n^3) \).
 \(T(n) = O(\quad) \)
Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n). \) \(T(n) = O(n^{\log_3 4}) \)
2. \(T(n) = 3T(n/3) + O(n). \) \(T(n) = O(n \lg n) \)
3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}). \) \(T(n) = O(n^2 \sqrt{n}) \)
4. \(T(n) = 8T(n/2) + O(n^3). \) \(T(n) = O(\) \)
Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \).
 \(T(n) = O(n^{\log_3 4}) \)

2. \(T(n) = 3T(n/3) + O(n) \).
 \(T(n) = O(n \log n) \)

3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \).
 \(T(n) = O(n^2 \sqrt{n}) \)

4. \(T(n) = 8T(n/2) + O(n^3) \).
 \(T(n) = O(n^3 \log n) \)
Covering Chessboard using L-shape Tiles

Consider a $2^n \times 2^n$ chessboard with one arbitrary chosen square removed. Prove that any such chessboard can be tiled without gaps by L-shaped pieces, each composed of 3 squares. The following figure shows how to tile a 4×4 chessboard with the square on the left-top corner removed, using 5 L-shaped pieces.
Finding Local Minimum In a 1-D Array

Given an array $A[1 .. n]$ of n distinct numbers, we say that some index $i \in \{1, 2, 3 \cdots , n\}$ is a local minimum of A, if $A[i] < A[i - 1]$ and $A[i] < A[i + 1]$ (we assume that $A[0] = A[n + 1] = \infty$).

Suppose the array A is already stored in memory. Give an $O(\log n)$-time algorithm to find a local minimum of A.

Given two n-digit integers, output their product. Design an $O(n^{\log_2 3})$-time algorithm to solve the problem. Notice that you cannot multiply two big integers directly using a single operation.
Majority and Weak Majority

Given an array of integers $A[1..n]$, we would like to decide if

1. there exists an integer x which occurs in A more than $n/2$ times. Give an algorithm which runs in time $O(n)$.
2. there exists an integer x which occurs in A more than $n/3$ times. Give an algorithm which runs in time $O(n)$.

You can assume we have the algorithm Select as a black-box, which, given an n-size array A and integer $1 \leq i \leq n$, can return the i-th smallest element in a size n-array in $O(n)$-time.
Given two sorted arrays A and B with total size n, you need to design and analyze an $O(\log n)$-time algorithm that outputs the median of the n numbers in A and B. You can assume n is odd and all the numbers are distinct. For example,

- **Input:** $A = [3, 5, 12, 18, 50],$
- $B = [2, 7, 11, 30],$
- **Output:** 11
- **Explanation:** the merged set is $[2, 3, 5, 7, 11, 12, 18, 30, 50]$