Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

Q@ T(n) =4T(n/3) + O(n). Tm)=0()
T(n) = 3T(n/3) + O(n). T(n)=0()
T(n) = 4T(n/2) + O(n*v/n). T(n)y=0()

Q T(n) = 8T(n/2) + O(n?). T(n) = Of)

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

@ T(n) = 4T(n/3) + O(n). T(n) = O(n'#:%)
T(n) = 3T(n/3) + O(n). T(n)=0()
T(n) = 4T(n/2) + O(n*v/n). T(n)y=0()

Q T(n) = 8T(n/2) + O(n?). T(n) = Of)

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

Q T'(n)=4T(n/3)+ O(n). T(n) = O(n'&s?)
T(n) =3T(n/3) + O(n). T(n) =0(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T'(n) = O()

O T'(n) =8T(n/2) + O(n?). T(n) = O()

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

Q T'(n)=4T(n/3)+ O(n). T(n) = O(n'&s?)
T(n) =3T(n/3) + O(n). T(n) =0(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T(n) = O(n*y/n)

O T'(n) =8T(n/2) + O(n?). T(n) = O()

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

Q T'(n)=4T(n/3)+ O(n). T(n) = O(n'&s?)
T(n) =3T(n/3) + O(n). T(n) =0(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T(n) = O(n*y/n)

O T'(n) =8T(n/2) + O(n?). T(n) = O(n’lgn)

Covering Chessboard using L-shape Tiles

Consider a 2" x 2™ chessboard with one arbitrary chosen square
removed. Prove that any such chessboard can be tiled without gaps
by L-shaped pieces, each composed of 3 squares. The following figure
shows how to tile a 4 X 4 chessboard with the square on the left-top
corner removed, using 5 L-shaped pieces.

Finding Local Minimum In a 1-D Array

Given an array A[l .. n] of n distinct numbers, we say that some
index i € {1,2,3--- ,n} is a local minimum of A, if Ali] < A[i — 1]
and Afi] < Ali + 1] (we assume that A[0] = A[n + 1] = o0).
Suppose the array A is already stored in memory. Give an
O(lgn)-time algorithm to find a local minimum of A.

Integer Multiplication

Given two n-digit integers, output their product. Design an
O(n'°&23)-time algorithm to solve the problem. Notice that you can
not multiple two big integers directly using a single operation.

Majority and Weak Majority

Given an array of integers A[l..n|, we would like to decide if

© there exists an integer x which occurs in A more than n/2 times.
Give an algorithm which runs in time O(n).

@ there exists an integer x which occurs in A more than n/3 times.
Give an algorithm which runs in time O(n).

You can assume we have the algorithm Select as a black-box, which,
given an n-size array A and integer 1 <4 < n, can return the ¢-th
smallest element in a size n-array in O(n)-time.

Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n, you need to
design and analyze an O(logn)-time algorithm that outputs the
median of the n numbers in A and B. You can assume n is odd and
all the numbers are distinct. For example,

Input: A = [3,5,12,18,50],
° B =12,7,11,30],

e Output: 11

@ Explanation: the merged set is [2,3,5,7, 11,12, 18, 30, 50]

