

CSE 431/531: Algorithm Analysis and Design (Fall 2022)

Divide-and-Conquer – Recitation

Lecturer: Shi Li

*Department of Computer Science and Engineering
University at Buffalo*

Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

① $T(n) = 4T(n/3) + O(n).$	$T(n) = O(\quad)$
② $T(n) = 3T(n/3) + O(n).$	$T(n) = O(\quad)$
③ $T(n) = 4T(n/2) + O(n^2\sqrt{n}).$	$T(n) = O(\quad)$
④ $T(n) = 8T(n/2) + O(n^3).$	$T(n) = O(\quad)$

Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

① $T(n) = 4T(n/3) + O(n).$	$T(n) = O(n^{\lg_3 4})$
② $T(n) = 3T(n/3) + O(n).$	$T(n) = O(\quad)$
③ $T(n) = 4T(n/2) + O(n^2\sqrt{n}).$	$T(n) = O(\quad)$
④ $T(n) = 8T(n/2) + O(n^3).$	$T(n) = O(\quad)$

Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

① $T(n) = 4T(n/3) + O(n).$	$T(n) = O(n^{\lg_3 4})$
② $T(n) = 3T(n/3) + O(n).$	$T(n) = O(n \lg n)$
③ $T(n) = 4T(n/2) + O(n^2\sqrt{n}).$	$T(n) = O(\quad)$
④ $T(n) = 8T(n/2) + O(n^3).$	$T(n) = O(\quad)$

Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

① $T(n) = 4T(n/3) + O(n).$	$T(n) = O(n^{\lg_3 4})$
② $T(n) = 3T(n/3) + O(n).$	$T(n) = O(n \lg n)$
③ $T(n) = 4T(n/2) + O(n^2\sqrt{n}).$	$T(n) = O(n^2\sqrt{n})$
④ $T(n) = 8T(n/2) + O(n^3).$	$T(n) = O(\quad)$

Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

① $T(n) = 4T(n/3) + O(n).$

$$T(n) = O(n^{\lg_3 4})$$

② $T(n) = 3T(n/3) + O(n).$

$$T(n) = O(n \lg n)$$

③ $T(n) = 4T(n/2) + O(n^2\sqrt{n}).$

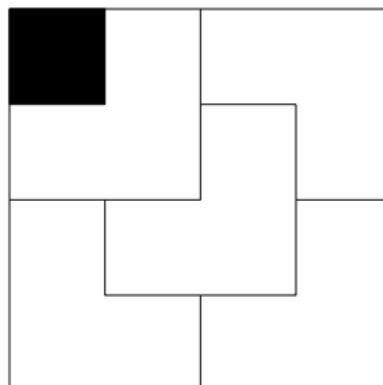
$$T(n) = O(n^2\sqrt{n})$$

④ $T(n) = 8T(n/2) + O(n^3).$

$$T(n) = O(n^3 \lg n)$$

Covering Chessboard using L-shape Tiles

Consider a $2^n \times 2^n$ chessboard with one arbitrary chosen square removed. Prove that any such chessboard can be tiled without gaps by L-shaped pieces, each composed of 3 squares. The following figure shows how to tile a 4×4 chessboard with the square on the left-top corner removed, using 5 L-shaped pieces.



Finding Local Minimum In a 1-D Array

Given an array $A[1 \dots n]$ of n **distinct** numbers, we say that some index $i \in \{1, 2, 3 \dots, n\}$ is a local minimum of A , if $A[i] < A[i - 1]$ and $A[i] < A[i + 1]$ (we assume that $A[0] = A[n + 1] = \infty$). Suppose the array A is already stored in memory. Give an $O(\lg n)$ -time algorithm to find a local minimum of A .

Integer Multiplication

Given two n -digit integers, output their product. Design an $O(n^{\log_2 3})$ -time algorithm to solve the problem. Notice that you can not multiply two big integers directly using a single operation.

Majority and Weak Majority

Given an array of integers $A[1..n]$, we would like to decide if

- ➊ there exists an integer x which occurs in A more than $n/2$ times.
Give an algorithm which runs in time $O(n)$.
- ➋ there exists an integer x which occurs in A more than $n/3$ times.
Give an algorithm which runs in time $O(n)$.

You can assume we have the algorithm `Select` as a black-box, which, given an n -size array A and integer $1 \leq i \leq n$, can return the i -th smallest element in a size n -array in $O(n)$ -time.

Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n , you need to design and analyze an $O(\log n)$ -time algorithm that outputs the median of the n numbers in A and B . You can assume n is odd and all the numbers are distinct. For example,

- Input: $A = [3, 5, 12, 18, 50]$,
- $B = [2, 7, 11, 30]$,
- Output: 11
- Explanation: the merged set is $[2, 3, 5, 7, 11, 12, 18, 30, 50]$