
CSE 431/531: Algorithm Analysis and Design (Fall 2022)

Divide-and-Conquer – Recitation

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/7

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

1 T (n) = 4T (n/3) +O(n). T (n) = O(

nlg3 4

)

2 T (n) = 3T (n/3) +O(n). T (n) = O(

n lg n

)

3 T (n) = 4T (n/2) +O(n2
√
n). T (n) = O(

n2
√
n

)

4 T (n) = 8T (n/2) +O(n3). T (n) = O(

n3 lg n

)



2/7

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

1 T (n) = 4T (n/3) +O(n). T (n) = O(nlg3 4)

2 T (n) = 3T (n/3) +O(n). T (n) = O(

n lg n

)

3 T (n) = 4T (n/2) +O(n2
√
n). T (n) = O(

n2
√
n

)

4 T (n) = 8T (n/2) +O(n3). T (n) = O(

n3 lg n

)



2/7

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

1 T (n) = 4T (n/3) +O(n). T (n) = O(nlg3 4)

2 T (n) = 3T (n/3) +O(n). T (n) = O(n lg n)

3 T (n) = 4T (n/2) +O(n2
√
n). T (n) = O(

n2
√
n

)

4 T (n) = 8T (n/2) +O(n3). T (n) = O(

n3 lg n

)



2/7

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

1 T (n) = 4T (n/3) +O(n). T (n) = O(nlg3 4)

2 T (n) = 3T (n/3) +O(n). T (n) = O(n lg n)

3 T (n) = 4T (n/2) +O(n2
√
n). T (n) = O(n2

√
n)

4 T (n) = 8T (n/2) +O(n3). T (n) = O(

n3 lg n

)



2/7

Solving Recurrences

For each of the following recurrences, use the master theorem to give
the tight asymptotic upper bound.

1 T (n) = 4T (n/3) +O(n). T (n) = O(nlg3 4)

2 T (n) = 3T (n/3) +O(n). T (n) = O(n lg n)

3 T (n) = 4T (n/2) +O(n2
√
n). T (n) = O(n2

√
n)

4 T (n) = 8T (n/2) +O(n3). T (n) = O(n3 lg n)



3/7

Covering Chessboard using L-shape Tiles

Consider a 2n × 2n chessboard with one arbitrary chosen square
removed. Prove that any such chessboard can be tiled without gaps
by L-shaped pieces, each composed of 3 squares. The following figure
shows how to tile a 4× 4 chessboard with the square on the left-top
corner removed, using 5 L-shaped pieces.



4/7

Finding Local Minimum In a 1-D Array

Given an array A[1 .. n] of n distinct numbers, we say that some
index i ∈ {1, 2, 3 · · · , n} is a local minimum of A, if A[i] < A[i− 1]
and A[i] < A[i+ 1] (we assume that A[0] = A[n+ 1] = ∞).
Suppose the array A is already stored in memory. Give an
O(lg n)-time algorithm to find a local minimum of A.



5/7

Integer Multiplication

Given two n-digit integers, output their product. Design an
O(nlog2 3)-time algorithm to solve the problem. Notice that you can
not multiple two big integers directly using a single operation.



6/7

Majority and Weak Majority

Given an array of integers A[1..n], we would like to decide if

1 there exists an integer x which occurs in A more than n/2 times.
Give an algorithm which runs in time O(n).

2 there exists an integer x which occurs in A more than n/3 times.
Give an algorithm which runs in time O(n).

You can assume we have the algorithm Select as a black-box, which,
given an n-size array A and integer 1 ≤ i ≤ n, can return the i-th
smallest element in a size n-array in O(n)-time.



7/7

Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n, you need to
design and analyze an O(log n)-time algorithm that outputs the
median of the n numbers in A and B. You can assume n is odd and
all the numbers are distinct. For example,

Input: A = [3, 5, 12, 18, 50],

B = [2, 7, 11, 30],

Output: 11

Explanation: the merged set is [2, 3, 5, 7, 11, 12, 18, 30, 50]


