Solving Recurrences

For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \). \(T(n) = O(\quad) \)
2. \(T(n) = 3T(n/3) + O(n) \). \(T(n) = O(\quad) \)
3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \). \(T(n) = O(\quad) \)
4. \(T(n) = 8T(n/2) + O(n^3) \). \(T(n) = O(\quad) \)
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \). \(T(n) = O(n^{\log_3 4}) \)
2. \(T(n) = 3T(n/3) + O(n) \). \(T(n) = O(\quad) \)
3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \). \(T(n) = O(\quad) \)
4. \(T(n) = 8T(n/2) + O(n^3) \). \(T(n) = O(\quad) \)
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. \(T(n) = 4T(n/3) + O(n) \). \(T(n) = O(n^{\lg 3 \cdot 4}) \)

2. \(T(n) = 3T(n/3) + O(n) \). \(T(n) = O(n \lg n) \)

3. \(T(n) = 4T(n/2) + O(n^2 \sqrt{n}) \). \(T(n) = O() \)

4. \(T(n) = 8T(n/2) + O(n^3) \). \(T(n) = O() \)
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. $T(n) = 4T(n/3) + O(n)$.
 $T(n) = O(n^{\log_3 4})$

2. $T(n) = 3T(n/3) + O(n)$.
 $T(n) = O(n \log n)$

3. $T(n) = 4T(n/2) + O(n^2 \sqrt{n})$.
 $T(n) = O(n^2 \sqrt{n})$

4. $T(n) = 8T(n/2) + O(n^3)$.
 $T(n) = O(\quad)$
For each of the following recurrences, use the master theorem to give the tight asymptotic upper bound.

1. $T(n) = 4T(n/3) + O(n)$. \hspace{1cm} T(n) = O(n^{\lg_3 4})$

2. $T(n) = 3T(n/3) + O(n)$. \hspace{1cm} T(n) = O(n \lg n)$

3. $T(n) = 4T(n/2) + O(n^2 \sqrt{n})$. \hspace{1cm} T(n) = O(n^2 \sqrt{n})$

4. $T(n) = 8T(n/2) + O(n^3)$. \hspace{1cm} T(n) = O(n^3 \lg n)$
Consider a $2^n \times 2^n$ chessboard with one arbitrary chosen square removed. Prove that any such chessboard can be tiled without gaps by L-shaped pieces, each composed of 3 squares. The following figure shows how to tile a 4×4 chessboard with the square on the left-top corner removed, using 5 L-shaped pieces.
Finding Local Minimum In a 1-D Array

Given an array $A[1 \ldots n]$ of n distinct numbers, we say that some index $i \in \{1, 2, 3 \ldots, n\}$ is a local minimum of A, if $A[i] < A[i - 1]$ and $A[i] < A[i + 1]$ (we assume that $A[0] = A[n + 1] = \infty$).

Suppose the array A is already stored in memory. Give an $O(\lg n)$-time algorithm to find a local minimum of A.
Finding Local Minimum In a 2-D Matrix (Hard Problem)

Given a two-dimensional array $A[1..n, 1..n]$ of n^2 distinct numbers, and $i, j \in \{1, 2, \cdots, n\}$, we say that (i, j) is a local minimum of A, if $A[i, j] < A[i, j - 1], A[i, j] < A[i, j + 1], A[i, j] < A[i - 1, j]$ and $A[i, j] < A[i + 1, j]$ (we assume that $A[i, j] = \infty$ if $i \in \{0, n + 1\}$ or $j \in \{0, n + 1\}$).

Suppose the array A is already stored in memory. Give an $O(n)$-time algorithm to find a local minimum of A.
Given two n-digit integers, output their product. Design a $n \log_2 3$-time algorithm to solve the problem. Notice that you can not multiple two big integers directly using a single operation.
Majority and Weak Majority

Given an array of integers $A[1..n]$, we would like to decide if

1. there exists an integer x which occurs in A more than $n/2$ times. Give an algorithm which runs in time $O(n)$.

2. there exists an integer x which occurs in A more than $n/3$ times. Give an algorithm which runs in time $O(n)$.

You can assume we have the algorithm Select as a black-box, which, given an n-size array A and integer $1 \leq i \leq n$, can return the i-th smallest element in a size n-array in $O(n)$-time.
Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n, you need to design and analyze an $O(\log n)$-time algorithm that outputs the median of the n numbers in A and B. You can assume n is odd and all the numbers are distinct. For example,

- **Input:** $A = [3, 5, 12, 18, 50]$,

 $B = [2, 7, 11, 30]$,

- **Output:** 11

- **Explanation:** the merged set is $[2, 3, 5, 7, 11, 12, 18, 30, 50]$