CSE 431/531: Algorithm Analysis and Design (Fall 2022) Dynamic Programming - Exercise Problems

Lecturer: Shi Li
Department of Computer Science and Engineering University at Buffalo

Shortest Path With Even Number of Vertices

- Given a directed acyclic graph with edge weights, our goal is to compute the shortest path from s to t with even number of edges. Reduce the problem to the shortest path problem.

Longest Increasing Subsequence

Given a sequence $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of n numbers, we need to find the maximum-length increasing subsequence of A. That is, we want to find a maximum-length sequence $\left(i_{1}, i_{2}, \cdots, i_{t}\right)$ of integers such that $1 \leq i_{1}<i_{2}<i_{3}<\cdots<i_{t} \leq n$ and $a_{i_{1}}<a_{i_{2}}<a_{i_{3}}<\cdots<a_{i_{t}}$. Design an $O\left(n^{2}\right)$-time algorithm for the problem.

Counting number of inverted 10 -tuples

Given an array A of n numbers, we say that a 10 -tuple $\left(i_{1}, i_{2}, \cdots, i_{10}\right)$ of integers is inverted if
$1 \leq i_{1}<i_{2}<i_{3}<\cdots<i_{10} \leq n$ and $A\left[i_{1}\right]>A\left[i_{2}\right]>A\left[i_{3}\right]>\cdots>A\left[i_{10}\right]$.
(1) Give an $O\left(n^{2}\right)$-time algorithm to count the number of inverted 10-tuples w.r.t A.
(2) Give an $O(n \lg n)$-time algorithm to count the number of inverted 10-tuples w.r.t A. (Hard Problem.)

Exercise: Counting Number of Domino Coverings

Input: n

Output: number of ways to cover a $n \times 2$ grid using domino tiles

Figure: When n is 4 , there are 5 ways to cover the grid.

Maximum weight independent set on trees

Given a tree with node weights, find the independent set of the tree with the maximum total weight.

Figure: The maximum-weight independent set of the tree has weight 47 . The red vertices give the independent set.

Design an $O(n)$-time algorithm for the problem, where n is the number of vertices in the tree.

