Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
- $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[
E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}
\]
- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected
Representation of Graphs

Adjacency matrix

- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- A is symmetric if graph is undirected

Linked lists

- For every vertex v, there is a linked list containing all neighbours of v.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS *(s)*

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s\)
2: mark \(s\) as “visited” and all other vertices as “unvisited”
3: \textbf{while} head \(\geq\) tail \textbf{do}
4: \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1\)
5: \textbf{for} all neighbours \(u\) of \(v\) \textbf{do}
6: \textbf{if} \(u\) is “unvisited” \textbf{then}
7: head \(\leftarrow\) head + 1, \(\text{queue}[\text{head}] = u\)
8: mark \(u\) as “visited”

- Running time: \(O(n + m)\).
Example of BFS via Queue

![Graph and Queue Diagram]

- Graph:
 - Nodes: 1, 2, 3, 4, 5, 6, 7, 8
 - Edges: 1-2, 1-3, 1-7, 2-3, 2-5, 3-4, 3-5, 4-8, 5-8, 6-8

- Queue:
 - Values: 1, 2, 3, 4, 5, 7, 8, 6
 - Head
 - Tail

- V:
 - From node 6 to node 3
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recurrsion

DFS\((s) \)
1. mark all vertices as “unvisited”
2. recursive-DFS\((s) \)

recursive-DFS\((v) \)
1. mark \(v \) as “visited”
2. for all neighbours \(u \) of \(v \) do
3. if \(u \) is unvisited then recursive-DFS\((u) \)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Testing Bipartiteness: Applications of BFS

Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\ldots \)
- Report “not a bipartite graph” if contradiction was found
- If \(G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

\textbf{BFS}(s)

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \(s \) as “visited” and all other vertices as “unvisited”
3: \(\text{color}[s] \leftarrow 0 \)
4: \textbf{while} head \(\geq \) tail \textbf{do}
5: \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1 \)
6: \textbf{for} all neighbours \(u \) of \(v \) \textbf{do}
7: \textbf{if} \(u \) is “unvisited” \textbf{then}
8: \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u \)
9: mark \(u \) as “visited”
10: \(\text{color}[u] \leftarrow 1 - \text{color}[v] \)
11: \textbf{else if} \(\text{color}[u] = \text{color}[v] \) \textbf{then}
12: print(“\(G \) is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: \textbf{for} each vertex \(v \in V \) \textbf{do}
3: \hspace{1em} \textbf{if} \(v \) is “unvisited” \textbf{then}
4: \hspace{2em} \text{test-bipartiteness}(v)
5: \hspace{1em} \text{print}(“G is bipartite”)

\textbf{Obs.} Running time of algorithm = \(O(n + m) \)
Outline

1. Graphs
2. Connectivity and Graph Traversal
 - Testing Bipartiteness
3. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \to \{1, 2, 3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time = $O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$head \leftarrow 0$, $tail \leftarrow 1$</td>
<td>$top \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$head \geq tail$</td>
<td>$top > 0$</td>
</tr>
</tbody>
</table>
| Add(v) | $head \leftarrow head + 1$
$S[head] \leftarrow v$ | $top \leftarrow top + 1$
$S[top] \leftarrow v$ |
| Retrieve v | $v \leftarrow S[tail]$
$tail \leftarrow tail + 1$ | $v \leftarrow S[top]$
$top \leftarrow top - 1$ |
Example

queue: \[a \ b \ c \ d \ f \ e \ g \]

degree

\[
\begin{array}{cccccccc}
\text{degree} & a & b & c & d & e & f & g \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]