CSE 431/531: Algorithm Analysis and Design (Spring 2022)

Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[
E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}
\]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

- **Adjacency matrix**
 - \(n \times n \) matrix, \(A[u, v] = 1 \) if \((u, v) \in E\) and \(A[u, v] = 0 \) otherwise
 - \(A \) is symmetric if graph is undirected

- **Linked lists**
 - For every vertex \(v \), there is a linked list containing all neighbours of \(v \).
Comparison of Two Representations

- **Assuming we are dealing with undirected graphs**
- **n: number of vertices**
- **m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$**
- **d_v: number of neighbors of v**

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u,v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbors of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

 two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

\textbf{BFS}(s)

1: \textit{head} ← 1, \textit{tail} ← 1, \textit{queue}[1] ← s
2: mark \textit{s} as “visited” and all other vertices as “unvisited”
3: \textbf{while} \textit{head} ≥ \textit{tail} \textbf{do}
4: \textit{v} ← \textit{queue}[\textit{tail}], \textit{tail} ← \textit{tail} + 1
5: \textbf{for} all neighbours \textit{u} of \textit{v} \textbf{do}
6: \hspace{1em} \textbf{if} \textit{u} is “unvisited” \textbf{then}
7: \hspace{2em} \textit{head} ← \textit{head} + 1, \textit{queue}[\textit{head}] = \textit{u}
8: \hspace{2em} mark \textit{u} as “visited”

- Running time: $O(n + m)$.
Example of BFS via Queue
Starting from s

- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

\[
\text{DFS}(s)
\]
1. mark all vertices as “unvisited”
2. recursive-DFS(s)

\[
\text{recursive-DFS}(v)
\]
1. mark \(v\) as “visited”
2. for all neighbours \(u\) of \(v\) do
3. if \(u\) is unvisited then recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report “not a bipartite graph” if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS(s)

1. head ← 1, tail ← 1, queue[1] ← s
2. mark s as “visited” and all other vertices as “unvisited”
3. color[s] ← 0
4. while head \geq tail do
5. \hspace{1em} v ← queue[tail], tail ← tail + 1
6. \hspace{1em} for all neighbours u of v do
7. \hspace{2em} if u is “unvisited” then
8. \hspace{3em} head ← head + 1, queue[head] = u
9. \hspace{3em} mark u as “visited”
10. \hspace{1em} else if color[u] = color[v] then
11. \hspace{2em} print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. \textbf{for} each vertex $v \in V$ \textbf{do}
3. \hspace{1em} \textbf{if} v is “unvisited” \textbf{then}
4. \hspace{2em} test-bipartiteness(v)
5. \hspace{1em} print(“G is bipartite”)

\textbf{Obs.} Running time of algorithm $= O(n + m)$
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots, n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree \(d_v \) of vertices
- Maintain a queue (or stack) of vertices \(v \) with \(d_v = 0 \)
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$head \leftarrow 0, \ tail \leftarrow 1$</td>
<td>$top \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$head \geq tail$</td>
<td>$top > 0$</td>
</tr>
</tbody>
</table>
| Add(v) | $head \leftarrow head + 1$
 | $top \leftarrow top + 1$
 | $S[head] \leftarrow v$
 | $S[top] \leftarrow v$
| Retrieve v | $v \leftarrow S[tail]$
 | $v \leftarrow S[top]$
 | $tail \leftarrow tail + 1$
 | $top \leftarrow top - 1$ |
Example

queue: $\begin{array}{cccccccc}
 a & b & c & d & f & e & g \\
\end{array}$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

degree | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

tail

head
Outline

1 Graphs

2 Connectivity and Graph Traversal
 - Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees
Properties of a BFS Tree

Given a BFS tree T of a connected graph G

- Can there be a vertical edge (u, v), $u \geq 2$ levels above v?
 - No. v should be a child of u
- Can there be a horizontal edge (u, v), $u \geq 2$ levels above v?
 - No. v should be a child of u.
- Can there be a horizontal edge (u, v), where u is 1 level above v, but v’s parent is to the right of u?
 - No. v should be a child of u.

Properties of a BFS Tree

Given a BFS tree T of a connected graph G, other than the tree edges, we only have horizontal edges (u, v), where

- either u and v are at the same level
- or u is 1 level above v, and v’s parent is to the left of u, (or vice versa)
Properties of a DFS Tree

Given a tree DFS tree T of a graph (connected) G,

- Can there be a horizontal edge (u, v)?
 - No.

- All non-tree edges are vertical edges.

- A vertical edge (u, v) and its the edges in the path from u to v in T form a cycle; we call it a canonical cycle.
Lemma If G contains a cycle, then it has a canonical cycle.

Proof.
- If G contains a cycle, then it must have at least one non-tree edge.
- W.r.t DFS tree T, we can only have vertical + tree edges
- \exists at least one vertical edge
- There is a canonical cycle
- There might or might not be non-canonical ones.
Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^*

- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
 - No.
- However, there can be horizontal edges (u, v) where u is visited after v.
Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^*

- Other than tree edges, there are two types of edges:
 - vertical edges directed to ancestors
 - horizontal edges (u, v) where u is visited after v.
- An vertical edge (u, v) and the tree edges in the tree path from v to u form a cycle, and we call it a canonical cycle.
Properties of a DFS Tree Over a Directed Graph

Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.
- Focus on tree edges and horizontal edges
- post-order-traversal of T gives a reversed topological ordering
- Without vertical edges, G has no cycles
- Again, there might be non-canonical cycles.
Algorithm 1 Check-Cycle-Directed

1: add a source s^* to G and edges from s^* to all other vertices.
2: $visited \leftarrow$ boolean array over V, with $visited[v] = false, \forall v$
3: $instack \leftarrow$ boolean array over V, with $instack[v] = false, \forall v$
4: $DFS(s^*)$
5: return “no cycle”

Algorithm 2 $DFS(v)$

1: $visited[v] \leftarrow true, instack[v] \leftarrow true$
2: for every outgoing edge (v, u) of v do
3: if $inqueue[u]$ then ▷ Find a vertical edge
4: exit the whole algorithm, by returning “there is a cycle”
5: else if $visited[u] = false$ then
6: $DFS(u)$
7: $instack[v] \leftarrow false$