Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set \{i, j\}.
- We call (i, j) an unordered pair; in this case $(i, j) = (j, i)$.

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

- **Adjacency matrix**
 - $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
 - A is symmetric if graph is undirected

- **Linked lists**
 - For every vertex v, there is a linked list containing all neighbours of v.
 - When graph is static, can use array of variant-length arrays.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td>(O(n))</td>
<td>(O(d_v))</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)
two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1. head ← 1, tail ← 1, queue[1] ← s
2. mark s as “visited” and all other vertices as “unvisited”
3. while head ≤ tail do
4. v ← queue[head], head ← head + 1
5. for all neighbours u of v do
6. if u is “unvisited” then
7. tail ← tail + 1, queue[tail] = u
8. mark u as “visited”

• Running time: \(O(n + m)\).
Example of BFS via Queue
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recurrsion

DFS(s)
1. mark all vertices as “unvisited”
2. recursive-DFS(s)

recursive-DFS(v)
1. mark v as “visited”
2. for all neighbours u of v do
3. if u is unvisited then recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\ldots \)
- Report “not a bipartite graph” if contradiction was found
- If \(G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

\textbf{BFS}(s)

1: \textit{head} \leftarrow 1, \textit{tail} \leftarrow 1, \textit{queue}[1] \leftarrow s
2: mark \textit{s} as “visited” and all other vertices as “unvisited”
3: \textit{color}[s] \leftarrow 0
4: \textbf{while} \textit{head} \leq \textit{tail} \textbf{do}
5: \quad \textit{v} \leftarrow \textit{queue}[^{\textit{head}}], \textit{head} \leftarrow \textit{head} + 1
6: \quad \textbf{for} all neighbours \textit{u} of \textit{v} \textbf{do}
7: \quad \quad \textbf{if} \textit{u} is “unvisited” \textbf{then}
8: \quad \quad \quad \textit{tail} \leftarrow \textit{tail} + 1, \textit{queue}[^{\textit{tail}}] = \textit{u}
9: \quad \quad \quad \text{mark} \textit{u} as “visited”
10: \quad \quad \textit{color}[\textit{u}] \leftarrow 1 - \textit{color}[^{\textit{v}}]
11: \quad \quad \textbf{else if} \textit{color}[\textit{u}] = \textit{color}[^{\textit{v}}] \textbf{then}
12: \quad \quad \quad \text{print(“G is not bipartite”) and exit}
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex \(v \in V \) do
3: \hspace{1em} if \(v \) is “unvisited” then
4: \hspace{2em} test-bipartiteness(\(v \))
5: \hspace{1em} print(“\(G \) is bipartite”)

Obs. Running time of algorithm = \(O(n + m) \)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$\text{head} \leftarrow 1, \text{tail} \leftarrow 0$</td>
<td>$\text{top} \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$\text{head} \leq \text{tail}$</td>
<td>$\text{top} > 0$</td>
</tr>
<tr>
<td>Add(v)</td>
<td>$\text{tail} \leftarrow \text{tail} + 1$</td>
<td>$\text{top} \leftarrow \text{top} + 1$</td>
</tr>
<tr>
<td></td>
<td>$S[\text{tail}] \leftarrow v$</td>
<td>$S[\text{top}] \leftarrow v$</td>
</tr>
<tr>
<td>Retrieve v</td>
<td>$v \leftarrow S[\text{head}]$</td>
<td>$v \leftarrow S[\text{top}]$</td>
</tr>
<tr>
<td></td>
<td>$\text{head} \leftarrow \text{head} + 1$</td>
<td>$\text{top} \leftarrow \text{top} - 1$</td>
</tr>
</tbody>
</table>
Example

queue: \(a \ b \ c \ d \ f \ e \ g \)

\[
\begin{array}{cccccccc}
\text{degree} & a & b & c & d & e & f & g \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]