Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs
2. Connectivity and Graph Traversal
 - Testing Bipartiteness
3. Topological Ordering
4. Bridges in a Graph
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

Adjacency matrix
- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- A is symmetric if graph is undirected

Linked lists
- For every vertex v, there is a linked list containing all neighbours of v.

1: 2 –> 3
2: 1 –> 3 –> 4 –> 5
3: 1 –> 2 –> 5 –> 7 –> 8
4: 2 –> 5
5: 2 –> 3 –> 4 –> 6
6: 5
7: 3 –> 8
8: 3 –> 7
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 • Testing Bipartiteness

3. Topological Ordering

4. Bridges in a Graph
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)
 two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- **Algorithm:** starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1. \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2. mark \(s \) as “visited” and all other vertices as “unvisited”
3. while \(\text{head} \geq \text{tail} \)
4. \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1 \)
5. for all neighbours \(u \) of \(v \)
6. if \(u \) is “unvisited” then
7. \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u \)
8. mark \(u \) as “visited”

- Running time: \(O(n + m) \).
Example of BFS via Queue

Diagram of a graph on the left and an array representation on the right, with a queue used for breadth-first search.
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

DFS(s)
1. mark all vertices as “unvisited”
2. recursive-DFS(s)

recursive-DFS(v)
1. mark \(v \) as “visited”
2. for all neighbours \(u \) of \(v \)
3. if \(u \) is unvisited then recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges in a Graph
A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report “not a bipartite graph” if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS(s)

1. $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
2. mark s as “visited” and all other vertices as “unvisited”
3. $color[s] \leftarrow 0$
4. while $head \geq tail$
 5. $v \leftarrow queue[tail], tail \leftarrow tail + 1$
 6. for all neighbours u of v
 7. if u is “unvisited” then
 8. $head \leftarrow head + 1, queue[head] = u$
 9. mark u as “visited”
 10. $color[u] \leftarrow 1 - color[v]$
 elseif $color[u] = color[v]$ then
 11. print(“G is not bipartite”) and exit

print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. for each vertex $v \in V$
3. \hspace{0.5cm} if v is “unvisited” then
4. \hspace{1cm} test-bipartiteness(v)
5. \hspace{1cm} print(“G is bipartite”)

Obs. Running time of algorithm $= O(n + m)$
Outline

1. Graphs
2. Connectivity and Graph Traversal
 - Testing Bipartiteness
3. Topological Ordering
4. Bridges in a Graph
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots, n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1. let $d_v \leftarrow 0$ for every $v \in V$
2. for every $v \in V$
 3. for every u such that $(v, u) \in E$
 4. $d_u \leftarrow d_u + 1$
 5. $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6. while $S \neq \emptyset$
7. $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8. $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9. for every u such that $(v, u) \in E$
10. $d_u \leftarrow d_u - 1$
11. if $d_u = 0$ then add u to S
12. if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$head \leftarrow 0$, $tail \leftarrow 1$</td>
<td>$top \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$head \geq tail$</td>
<td>$top > 0$</td>
</tr>
<tr>
<td>Add(v)</td>
<td>$head \leftarrow head + 1$</td>
<td>$top \leftarrow top + 1$</td>
</tr>
<tr>
<td></td>
<td>$S[head] \leftarrow v$</td>
<td>$S[top] \leftarrow v$</td>
</tr>
<tr>
<td>Retrieve v</td>
<td>$v \leftarrow S[tail]$</td>
<td>$v \leftarrow S[top]$</td>
</tr>
<tr>
<td></td>
<td>$tail \leftarrow tail + 1$</td>
<td>$top \leftarrow top - 1$</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Bridges in a Graph
Type of edges with respect to a tree

Given a graph $G = (V, E)$ and a rooted tree T in G, edges in G can be one of the three types:

- **Tree edges**: edges in T
- **Cross edges** (u, v): u and v do not have an ancestor-descendant relation
- **Vertical edges** (u, v): u is an ancestor of v, or v is an ancestor of u
Properties of a BFS Tree

Given a tree BFS tree T of a graph G,

- Can there be vertical edges?
 - No.

- Can there be cross edges (u, v) with u and v 2 levels apart?
 - No.

- For any cross edge (u, v), u and v are at most 1 level apart.
Properties of a DFS Tree

Given a tree DFS tree T of a graph G,

- Can there be cross edges?
 - No.

- All non-tree edges are vertical edges.
Def. Given a connected graph $G = (V, E)$, an edge $e \in E$ is called a **bridge** if the graph $G = (V, E \setminus \{e\})$ is disconnected.
There are only tree edges and vertical edges.

Vertical edges are not bridges.

A tree edge \((v, u)\) is not a bridge if some vertical edge jumping from below \(u\) to above \(v\).

Other tree edges are bridges.
- $level(v)$: the level of vertex v in DFS tree
- T_v: the sub tree rooted at v
- $h(v)$: the smallest level that can be reached using a vertical edge from vertices in T_v
- $(parent(u), u)$ is a bridge if $h(u) \geq level(u)$.
recursive-DFS(\(v\))

1. mark \(v\) as “visited”
2. \(h(v) \leftarrow \infty\)
3. for all neighbours \(u\) of \(v\)
 4. if \(u\) is unvisited then
 5. \(\text{level}(u) \leftarrow \text{level}(v) + 1\)
 6. recursive-DFS(\(u\))
 7. if \(h(u) \geq \text{level}(u)\) then claim \((v, u)\) is a bridge
 8. if \(h(u) < h(v)\) then \(h(v) \leftarrow h(u)\)
 9. else if \(\text{level}(u) < \text{level}(v) - 1\) then
 10. if \(\text{level}(u) < h(v)\) then \(h(v) \leftarrow \text{level}(u)\)
Finding Bridges

1. mark all vertices as “unvisited”
2. for every $v \in V$ do
3. if v is unvisited then
4. $level(v) \leftarrow 0$
5. recursive-DFS(v)
