Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

Adjacency matrix
- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- A is symmetric if graph is undirected

Linked lists
- For every vertex v, there is a linked list containing all neighbours of v.
- When graph is static, can use array of variant-length arrays.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Outline

1 Graphs

2 Connectivity and Graph Traversal
 • Testing Bipartiteness

3 Topological Ordering
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)
 two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS

1. $\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s$
2. mark s as “visited” and all other vertices as “unvisited”
3. while $\text{head} \leq \text{tail}$ do
4. $v \leftarrow \text{queue}[\text{head}], \text{head} \leftarrow \text{head} + 1$
5. for all neighbours u of v do
6. if u is “unvisited” then
7. $\text{tail} \leftarrow \text{tail} + 1, \text{queue}[\text{tail}] = u$
8. mark u as “visited”

- Running time: $O(n + m)$.
Example of BFS via Queue
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| **DFS**(\(s\)) | 1: mark all vertices as “unvisited”
2: recursive-DFS(\(s\)) |
| **recursive-DFS**(\(v\)) | 1: mark \(v\) as “visited”
2: for all neighbours \(u\) of \(v\) do
3: if \(u\) is unvisited then recursive-DFS(\(u\)) |
Outline

1 Graphs

2 Connectivity and Graph Traversal
 - Testing Bipartiteness

3 Topological Ordering
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- \ldots

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS(s)

1: head ← 1, tail ← 1, queue[1] ← s
2: mark s as “visited” and all other vertices as “unvisited”
3: color[s] ← 0
4: while head ≤ tail do
5: v ← queue[head], head ← head + 1
6: for all neighbours u of v do
7: if u is “unvisited” then
8: tail ← tail + 1, queue[tail] = u
9: mark u as “visited”
10: color[u] ← 1 − color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: if v is “unvisited” then
4: test-bipartiteness(v)
5: print(“G is bipartite”)

Obs. Running time of algorithm $= O(n + m)$
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) \(G = (V, E) \)

Output: 1-to-1 function \(\pi : V \rightarrow \{1, 2, 3 \ldots , n\} \), so that

- if \((u, v) \in E\) then \(\pi(u) < \pi(v)\)
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$\text{head} \leftarrow 1, \text{tail} \leftarrow 0$</td>
<td>$\text{top} \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$\text{head} \leq \text{tail}$</td>
<td>$\text{top} > 0$</td>
</tr>
</tbody>
</table>
| Add(v) | $\text{tail} \leftarrow \text{tail} + 1$
 | $S[\text{tail}] \leftarrow v$ | $\text{top} \leftarrow \text{top} + 1$
 | | $S[\text{top}] \leftarrow v$ |
| Retrieve v | $v \leftarrow S[\text{head}]$
 | $\text{head} \leftarrow \text{head} + 1$ | $v \leftarrow S[\text{top}]$
 | | $\text{top} \leftarrow \text{top} - 1$ |
Example

queue: \[a \ b \ c \ d \ f \ e \ g \]

<table>
<thead>
<tr>
<th>degree</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

head

tail