Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[
E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}
\]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
 - A is symmetric if graph is undirected

- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of $v.$
Assuming we are dealing with undirected graphs

- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

\[\text{BFS}(s)\]

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \(s \) as “visited” and all other vertices as “unvisited”
3: while \(\text{head} \geq \text{tail} \) do
4: \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1 \)
5: for all neighbours \(u \) of \(v \) do
6: if \(u \) is “unvisited” then
7: \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u \)
8: mark \(u \) as “visited”

- Running time: \(O(n + m) \).
Example of BFS via Queue

```
1 2 3 4 5 7 8 6
```
Depth-First Search (DFS)

- Starting from \(s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

DFS(s)
1. mark all vertices as “unvisited”
2. recursive-DFS(s)

recursive-DFS(v)
1. mark v as “visited”
2. for all neighbours u of v do
3. if u is unvisited then recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Def. A graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

• Taking an arbitrary vertex $s \in V$
• Assuming $s \in L$ w.l.o.g
• Neighbors of s must be in R
• Neighbors of neighbors of s must be in L
• …
• Report “not a bipartite graph” if contradiction was found
• If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS\((s) \)

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \(s \) as “visited” and all other vertices as “unvisited”
3: \(\text{color}[s] \leftarrow 0 \)
4: while \(\text{head} \geq \text{tail} \) do
5: \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1 \)
6: for all neighbours \(u \) of \(v \) do
7: if \(u \) is “unvisited” then
8: \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u \)
9: mark \(u \) as “visited”
10: \(\text{color}[u] \leftarrow 1 - \text{color}[v] \)
11: else if \(\text{color}[u] = \text{color}[v] \) then
12: print(“\(G \) is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex \(v \in V \) do
3: \[\text{if } v \text{ is “unvisited” } \]
4: \[\text{test-bipartiteness}(v) \]
5: \[\text{print(“G is bipartite”)} \]

Obs. Running time of algorithm = \(O(n + m) \)
Outline

1. Graphs
2. Connectivity and Graph Traversal
 - Testing Bipartiteness
3. Topological Ordering
4. Properties of BFS and DFS trees
Topological Ordering Problem

Input: a directed acyclic graph (DAG) \(G = (V, E) \)

Output: 1-to-1 function \(\pi : V \rightarrow \{1, 2, 3 \cdots, n\} \), so that

- if \((u, v) \in E\) then \(\pi(u) < \pi(v)\)
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(\(G\))

1: let \(d_v \leftarrow 0\) for every \(v \in V\)
2: for every \(v \in V\) do
3: for every \(u\) such that \((v, u) \in E\) do
4: \(d_u \leftarrow d_u + 1\)
5: \(S \leftarrow \{v : d_v = 0\}, i \leftarrow 0\)
6: while \(S \neq \emptyset\) do
7: \(v \leftarrow\) arbitrary vertex in \(S\), \(S \leftarrow S \setminus \{v\}\)
8: \(i \leftarrow i + 1, \pi(v) \leftarrow i\)
9: for every \(u\) such that \((v, u) \in E\) do
10: \(d_u \leftarrow d_u - 1\)
11: if \(d_u = 0\) then add \(u\) to \(S\)
12: if \(i < n\) then output “not a DAG”

- \(S\) can be represented using a queue or a stack
- Running time = \(O(n + m)\)
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$head \leftarrow 0$, $tail \leftarrow 1$</td>
<td>$top \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$head \geq tail$</td>
<td>$top > 0$</td>
</tr>
<tr>
<td>Add(v)</td>
<td>$head \leftarrow head + 1$, $S[head] \leftarrow v$</td>
<td>$top \leftarrow top + 1$, $S[top] \leftarrow v$</td>
</tr>
<tr>
<td>Retrieve v</td>
<td>$v \leftarrow S[tail]$, $tail \leftarrow tail + 1$</td>
<td>$v \leftarrow S[top]$, $top \leftarrow top - 1$</td>
</tr>
</tbody>
</table>
Example

queue:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>e</th>
<th>g</th>
</tr>
</thead>
</table>

degree

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
</table>

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering

4. Properties of BFS and DFS trees
Given a BFS tree T of a connected graph G

- Can there be a vertical edge (u, v), $u \geq 2$ levels above v?
 - No. v should be a child of u

- Can there be a horizontal edge (u, v), $u \geq 2$ levels above v?
 - No. v should be a child of u.

- Can there be a horizontal edge (u, v), where u is 1 level above v, but v’s parent is to the right of u?
 - No. v should be a child of u.

Properties of a BFS Tree
Properties of a BFS Tree

Given a BFS tree T of a connected graph G, other than the tree edges, we only have horizontal edges (u, v), where

- either u and v are at the same level
- or u is 1 level above v, and v’s parent is to the left of u, (or vice versa)
Properties of a DFS Tree

Given a tree DFS tree T of a graph (connected) G,

- Can there be a horizontal edge (u, v)?
 - No.
- All non-tree edges are vertical edges.
- A vertical edge (u, v) and its the edges in the path from u to v in T form a cycle; we call it a canonical cycle.
Properties of a DFS Tree

Lemma If G contains a cycle, then it has a canonical cycle.

Proof.
- If G contains a cycle, then it must have at least one non-tree edge.
- W.r.t DFS tree T, we can only have vertical + tree edges.
- \exists at least one vertical edge
- There is a canonical cycle
- There might or might not be non-canonical ones.
Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^*

• Can there be a horizontal (directed) edge (u, v) where u is visited before v?
 • No.
• However, there can be horizontal edges (u, v) where u is visited after v.
Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^*

- Other than tree edges, there are two types of edges:
 - vertical edges directed to ancestors
 - horizontal edges (u, v) where u is visited after v.
- An vertical edge (u, v) and the tree edges in the tree path from v to u form a cycle, and we call it a canonical cycle.
Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.
- Focus on tree edges and horizontal edges.
- Post-order-traversal of T gives a reversed topological ordering.
- Without vertical edges, G has no cycles.
- Again, there might be non-canonical cycles.
Algorithm 1 Check-Cycle-Directed
1: add a source s^* to G and edges from s^* to all other vertices.
2: $visited \leftarrow$ boolean array over V, with $visited[v] = false, \forall v$
3: $instack \leftarrow$ boolean array over V, with $instack[v] = false, \forall v$
4: DFS(s^*)
5: return “no cycle”

Algorithm 2 DFS(v)
1: $visited[v] \leftarrow true, instack[v] \leftarrow true$
2: for every outgoing edge (v, u) of v do
3: if $inqueue[u]$ then \hspace{1cm} \triangleright \text{Find a vertical edge}
4: exit the whole algorithm, by returning “there is a cycle”
5: else if $visited[u] = false$ then
6: DFS(u)
7: $instack[v] \leftarrow false$