Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
However, the trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

$f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.

convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
2. Design more efficient algorithms to solve problems
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
Def. In an **optimization problem**, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a polynomial if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient
Def. In an *optimization problem*, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in *exponential* time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a *polynomial* if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
- convention: polynomial time = efficient

Goals of algorithm design
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
2. Design more efficient algorithms to solve problems
Common Paradigms for Algorithm Design

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
Common Paradigms for Algorithm Design

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming

Greedy algorithms are often for optimization problems.
Common Paradigms for Algorithm Design

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an *irrevocable* decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an *irrevocable* decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” *(key)*
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem *(usually easy)*
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)

\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)

Can put at most 1 item in a box

Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)

\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)

Can put at most 1 item in a box

Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 15, 12
- Item sizes: 45, 42, 20, 19, 16
- Can put 3 items in boxes: 45 \(\rightarrow \) 60, 20 \(\rightarrow \) 40, 19 \(\rightarrow \) 25
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irreversible decision using a “reasonable” strategy

Q: Take box 1. Which item should we put in box 1?
A: The item of the largest size that can be put into the box.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocablere decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
- formal proof via exchanging argument:
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let \(j \) = largest item that box 1 can hold.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let j = largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let j = largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

 S:

 ![Diagram showing box 1 with item j]
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

$$S': \quad \text{box 1} \quad \text{item } j' \quad \text{item } j \quad \ldots \quad \text{item } j''$$

- $s_{j'} \leq s_j$, and swapping gives another solution S'
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S':

$$
\begin{array}{cccc}
\text{box 1} & \text{item } j' & \text{item } j & \text{……} \\
\end{array}
$$

- $s_{j'} \leq s_j$, and swapping gives another solution S'
- S' is also an optimum solution. In S', j is put into Box 1.
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: we decided to put Item j into Box 1, and the remaining instance is obtained by removing Item j and Box 1.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: \(T \leftarrow \{1, 2, 3, \ldots, m\} \)
2: for \(i \leftarrow 1 \) to \(n \) do
3: if some item in \(T \) can be put into box \(i \) then
4: \(j \leftarrow \) the largest item in \(T \) that can be put into box \(i \)
5: print(“put item \(j \) in box \(i \)”)
6: \(T \leftarrow T \setminus \{j\} \)
Generic Greedy Algorithm

1: \textbf{while} the instance is non-trivial \textbf{do}
2: make the choice using the greedy strategy
3: reduce the instance

\textbf{Lemma} Generic algorithm is correct \textit{if and only if} the greedy strategy is safe.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy strategy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe”
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is “safe” if there is always an optimum solution that is “consistent” with the decision made according to the strategy.
let S be an arbitrary optimum solution.

if S is consistent with the greedy choice, done.

otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.

- The procedure is not a part of the algorithm.
Outline

1 Toy Example: Box Packing

2 Interval Scheduling

3 Offline Caching
 - Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code

5 Summary
Interval Scheduling

Input: \(n \) jobs, job \(i \) with start time \(s_i \) and finish time \(f_i \)

\(i \) and \(j \) are **compatible** if \([s_i, f_i) \) and \([s_j, f_j) \) are disjoint

Output: A maximum-size subset of mutually compatible jobs
Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i.

i and j are **compatible** if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint.

Output: A maximum-size subset of mutually compatible jobs.
Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? **No!**
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

![Diagram showing intervals on a timeline]

0 1 2 3 4 5 6 7 8 9
Which of the following strategies are safe?

Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?
Which of the following strategies are safe?

- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!

![Diagram of scheduling intervals](image)
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
Lemma It is safe to schedule the job \(j \) with the earliest finish time: There is an optimum solution where the job \(j \) with the earliest finish time is scheduled.

Proof.

1. Take an arbitrary optimum solution \(S \)

\[S: \quad \text{[intervals]} \]
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S'
- If it contains j, done
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S'
- If it contains j, done
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S.
- If it contains j, done.
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

```
S:   [ ]   [ ]   [ ]   [ ]   [ ]   [ ]

j:   [ ]
```
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S'
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem?
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Greedy Algorithm for Interval Scheduling

\textbf{Schedule}(s, f, n)

1: \(A \leftarrow \{1, 2, \cdots, n\} \), \(S \leftarrow \emptyset \)
2: \textbf{while} \(A \neq \emptyset \) \textbf{do}
3: \(j \leftarrow \arg \min_{j' \in A} f_{j'} \)
4: \(S \leftarrow S \cup \{j\} \); \(A \leftarrow \{j' \in A : s_{j'} \geq f_j\} \)
5: \textbf{return} \(S \)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1. \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2. while \(A \neq \emptyset\) do
3. \(j \leftarrow \arg \min_{j' \in A} f_{j'}\)
4. \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5. return \(S\)
Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1. $A \leftarrow \{1, 2, \ldots, n\}$, $S \leftarrow \emptyset$
2. while $A \neq \emptyset$ do
3. $j \leftarrow \arg \min_{j' \in A} f_{j'}$
4. $S \leftarrow S \cup \{j\}$; $A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$
5. return S
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \ldots, n\}, S \leftarrow \emptyset \)
2: \textbf{while} \(A \neq \emptyset \) \textbf{do}
3: \(j \leftarrow \arg \min_{j' \in A} f_{j'} \)
4: \(S \leftarrow S \cup \{j\}; \ A \leftarrow \{j' \in A : s_{j'} \geq f_j\} \)
5: \textbf{return} \(S \)
Greedy Algorithm for Interval Scheduling

\textbf{Schedule}(s, f, n)

1: \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset \)
2: \textbf{while} \(A \neq \emptyset \) \textbf{do}
3: \(j \leftarrow \arg\min_{j' \in A} f_{j'} \)
4: \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\} \)
5: \textbf{return} \(S \)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1. \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2. while \(A \neq \emptyset\) do
3. \(j \leftarrow \arg\min_{j' \in A} f_{j'}\)
4. \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5. return \(S\)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2: \textbf{while } \(A \neq \emptyset \) \textbf{do}
3: \(j \leftarrow \arg \min_{j' \in A} f_{j'}\)
4: \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return } S

Running time of algorithm?
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1. \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2. \textbf{while} \(A \neq \emptyset\) \textbf{do}
3. \(j \leftarrow \arg \min_{j' \in A} f_{j'}\)
4. \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5. \textbf{return} \(S\)

Running time of algorithm?
- Naive implementation: \(O(n^2)\) time
Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1. $A \leftarrow \{1, 2, \cdots, n\}$, $S \leftarrow \emptyset$
2. while $A \neq \emptyset$ do
3. \hspace{1em} $j \leftarrow \text{arg min}_{j' \in A} f_{j'}$
4. \hspace{1em} $S \leftarrow S \cup \{j\}$; $A \leftarrow \{j' \in A : s_{j'} \geq f_{j}\}$
5. return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- Clever implementation: $O(n \log n)$ time
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n) \)

1. sort jobs according to \(f \) values
2. \(t \leftarrow 0, S \leftarrow \emptyset \)
3. for every \(j \in [n] \) according to non-decreasing order of \(f_j \) do
 4. if \(s_j \geq t \) then
 5. \(S \leftarrow S \cup \{j\} \)
 6. \(t \leftarrow f_j \)
7. return \(S \)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0\), \(S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
4: \(\textbf{if } s_j \geq t \textbf{ then}\)
5: \(S \leftarrow S \cup \{j\}\)
6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
 4: if \(s_j \geq t\) then
 5: \(S \leftarrow S \cup \{j\}\)
 6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
 4: if \(s_j \geq t\) then
 5: \(S \leftarrow S \cup \{j\}\)
 6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

\[\text{Schedule}(s, f, n) \]

1: sort jobs according to \(f \) values
2: \(t \leftarrow 0, S \leftarrow \emptyset \)
3: \textbf{for every} \(j \in [n] \) \textbf{according to non-decreasing order of} \(f_j \) \textbf{do}
4: \hspace{1em} \textbf{if} \(s_j \geq t \) \textbf{then}
5: \hspace{2em} \(S \leftarrow S \cup \{j\} \)
6: \hspace{2em} \(t \leftarrow f_j \)
7: \textbf{return} \(S \)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: \textbf{for} every \(j \in [n]\) according to non-decreasing order of \(f_j\) \textbf{do}
4: \hspace{1em} \textbf{if} \(s_j \geq t\) \textbf{then}
5: \hspace{2em} \(S \leftarrow S \cup \{j\}\)
6: \hspace{2em} \(t \leftarrow f_j\)
7: \textbf{return} \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
4: if \(s_j \geq t\) then
5: \(S \leftarrow S \cup \{j\}\)
6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0\), \(S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
4: \hspace{1em} if \(s_j \geq t\) then
5: \hspace{2em} \(S \leftarrow S \cup \{j\}\)
6: \hspace{2em} \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
4: \(\text{if } s_j \geq t \text{ then}\)
5: \(S \leftarrow S \cup \{j\}\)
6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

Schedule(s, f, n)

1: sort jobs according to f values
2: $t \leftarrow 0$, $S \leftarrow \emptyset$
3: for every $j \in [n]$ according to non-decreasing order of f_j do
4: \hspace{1em} if $s_j \geq t$ then
5: \hspace{2em} $S \leftarrow S \cup \{j\}$
6: \hspace{2em} $t \leftarrow f_j$
7: return S
Clever Implementation of Greedy Algorithm

\textbf{Schedule}(s, f, n)

1: sort jobs according to f values
2: $t \leftarrow 0$, $S \leftarrow \emptyset$
3: for every $j \in [n]$ according to non-decreasing order of f_j do
4: \hspace{1em} \textbf{if} $s_j \geq t$ \textbf{then}
5: \hspace{2em} $S \leftarrow S \cup \{j\}$
6: \hspace{2em} $t \leftarrow f_j$
7: return S

![Diagram showing the implementation of the Schedule function](image-url)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, \ S \leftarrow \emptyset\)
3: **for** every \(j \in [n]\) according to non-decreasing order of \(f_j\) **do**
 4: **if** \(s_j \geq t\) **then**
 5: \(S \leftarrow S \cup \{j\}\)
 6: \(t \leftarrow f_j\)
7: **return** \(S\)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n) \)

1: sort jobs according to \(f \) values
2: \(t \leftarrow 0, \ S \leftarrow \emptyset \)
3: for every \(j \in [n] \) according to non-decreasing order of \(f_j \) do
4: \[\text{if} \ s_j \geq t \ \text{then} \]
5: \[S \leftarrow S \cup \{j\} \]
6: \[t \leftarrow f_j \]
7: return \(S \)
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
 4: if \(s_j \geq t\) then
 5: \(S \leftarrow S \cup \{j\}\)
 6: \(t \leftarrow f_j\)
7: return \(S\)
Clever Implementation of Greedy Algorithm

\textbf{Schedule}(s, f, n)

1: sort jobs according to \(f \) values
2: \(t \leftarrow 0, S \leftarrow \emptyset \)
3: \textbf{for} every \(j \in [n] \) according to non-decreasing order of \(f_j \) \textbf{do}
4: \hspace{1em} \textbf{if} \(s_j \geq t \) \textbf{then}
5: \hspace{2em} \(S \leftarrow S \cup \{j\} \)
6: \hspace{2em} \(t \leftarrow f_j \)
7: \textbf{return} \(S \)
Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0$, $S \leftarrow \emptyset$
3: for every $j \in [n]$ according to non-decreasing order of f_j do
4: if $s_j \geq t$ then
5: $S \leftarrow S \cup \{j\}$
6: $t \leftarrow f_j$
7: return S
Clever Implementation of Greedy Algorithm

\textbf{Schedule}(s, f, n)

1: sort jobs according to f values
2: $t \leftarrow 0$, $S \leftarrow \emptyset$
3: for every $j \in [n]$ according to non-decreasing order of f_j do
4: \hspace{1em} if $s_j \geq t$ then
5: \hspace{2em} $S \leftarrow S \cup \{j\}$
6: \hspace{2em} $t \leftarrow f_j$
7: return S
Clever Implementation of Greedy Algorithm

Schedule\((s, f, n)\)

1: sort jobs according to \(f\) values
2: \(t \leftarrow 0, S \leftarrow \emptyset\)
3: for every \(j \in [n]\) according to non-decreasing order of \(f_j\) do
 4: if \(s_j \geq t\) then
 5: \(S \leftarrow S \cup \{j\}\)
 6: \(t \leftarrow f_j\)
7: return \(S\)
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
Offline Caching

- Cache that can store k pages
- Sequence of page requests
Offline Caching

- Cache that can store k pages
- Sequence of page requests
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

<table>
<thead>
<tr>
<th>page sequence</th>
<th>cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
</tr>
<tr>
<td>5</td>
<td>×</td>
</tr>
<tr>
<td>4</td>
<td>×</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need to bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

<table>
<thead>
<tr>
<th>page sequence</th>
<th>cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✔️ 1</td>
</tr>
<tr>
<td>5</td>
<td>✔️ 5</td>
</tr>
<tr>
<td>4</td>
<td>✔️ 4</td>
</tr>
<tr>
<td>2</td>
<td>✔️ 2</td>
</tr>
<tr>
<td>5</td>
<td>✔️ 5</td>
</tr>
<tr>
<td>3</td>
<td>✔️ 3</td>
</tr>
<tr>
<td>2</td>
<td>✔️ 2</td>
</tr>
<tr>
<td>1</td>
<td>✔️ 1</td>
</tr>
</tbody>
</table>
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

```plaintext
page sequence | cache
---|---
1 | ☒ 1 5 4
5 | ❌ 1 5 4
4 | ❌ 1 5 4
2 | ❌ 1 2 4
5 | ❌ 1 2 5
3 | ❌ 1 2 3
2 | ☒ 1 2 3
1 | ☒ 1 2 3
```
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
Offline Caching

- Cache that can store \(k \) pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

The sequence of page requests is: 1, 5, 4, 2, 5, 3.

The cache state after each request is shown in the table:

<table>
<thead>
<tr>
<th>Page</th>
<th>Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The total number of misses is 6.
Offline Caching

- **Cache that can store** k **pages**
- **Sequence of page requests**
- **Cache miss happens if** requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- **Cache hit happens if** requested page already in cache.
- **Goal:** minimize the number of cache misses.

<table>
<thead>
<tr>
<th>page sequence</th>
<th>cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
</tr>
<tr>
<td>4</td>
<td>✗</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>

misses = 6
A Better Solution for Example

<table>
<thead>
<tr>
<th>page sequence</th>
<th>cache</th>
<th>misses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗ 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>✗ 1 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✗ 1 5 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✗ 1 2 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>✗ 1 2 5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✗ 1 2 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓ 1 2 3</td>
<td>misses = 6</td>
</tr>
<tr>
<td>1</td>
<td>✓ 1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ 1</td>
</tr>
<tr>
<td>✗ 1 5</td>
</tr>
<tr>
<td>✗ 1 5 4</td>
</tr>
<tr>
<td>✗ 1 5 2</td>
</tr>
<tr>
<td>✓ 1 5 2</td>
</tr>
<tr>
<td>✓ 1 3 2</td>
</tr>
<tr>
<td>✓ 1 3 2</td>
</tr>
</tbody>
</table>
Offline Caching Problem

Input: k: the size of cache
n: number of pages
$\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \cdots, i_T \in \{\text{hit, empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

We use $[n]$ for $\{1, 2, 3, \cdots, n\}$.

Offline Caching: we know the whole sequence ahead of time.
Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?
A: Online caching
Offline Caching Problem

Input:
- k: the size of cache
- n: number of pages

We use $[n]$ for $\{1, 2, 3, \cdots, n\}$.

Output:
- $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests
- $i_1, i_2, i_3, \cdots, i_T \in \{\text{hit, empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

- **Offline Caching:** we know the whole sequence ahead of time.
- **Online Caching:** we have to make decisions on the fly, before seeing future requests.
Offline Caching Problem

Input:
- k: the size of cache
- n: number of pages

\[
\rho_1, \rho_2, \rho_3, \ldots, \rho_T \in [n]: \text{sequence of requests}
\]

Output:
- $i_1, i_2, i_3, \ldots, i_T \in \{\text{hit, empty}\} \cup [n]: \text{indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)}$

- **Offline Caching:** we know the whole sequence ahead of time.
- **Online Caching:** we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?
Offline Caching Problem

Input:
- \(k \): the size of cache
- \(n \): number of pages

\[\rho_1, \rho_2, \rho_3, \ldots, \rho_T \in [n] \]: sequence of requests

Output:
- \(i_1, i_2, i_3, \ldots, i_T \in \{ \text{hit, empty} \} \cup [n] \): indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

Q:
Which one is more realistic?

A:
Online caching
- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?
Offline Caching: we know the whole sequence ahead of time.
Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?
A: Online caching

Q: Why do we study the offline caching problem?
A: Use the offline solution as a benchmark to measure the “competitive ratio” of online algorithms
Offline Caching: Potential Greedy Algorithms

- FIFO (First-In-First-Out): always evict the first page in cache

- LRU (Least-Recently-Used): evict page whose most recent access was earliest

- LFU (Least-Frequently-Used): evict page that was least frequently requested

All the above algorithms are not optimum!
Indeed all the algorithms are “online”, i.e., the decisions can be made without knowing future requests. Online algorithms cannot be optimum.
Offline Caching: Potential Greedy Algorithms

- FIFO (First-In-First-Out): always evict the first page in cache
- LRU (Least-Recently-Used): Evict page whose most recent access was earliest

All the above algorithms are not optimum! Indeed all the algorithms are “online”, i.e., the decisions can be made without knowing future requests. Online algorithms cannot be optimum.
Offline Caching: Potential Greedy Algorithms

- **FIFO (First-In-First-Out):** always evict the first page in cache
- **LRU (Least-Recently-Used):** Evict page whose most recent access was earliest
- **LFU (Least-Frequently-Used):** Evict page that was least frequently requested

All the above algorithms are not optimum! Indeed all the algorithms are "online", i.e., the decisions can be made without knowing future requests. Online algorithms cannot be optimum.
FIFO (First-In-First-Out): always evict the first page in cache
LRU (Least-Recently-Used): Evict page whose most recent access was earliest
LFU (Least-Frequently-Used): Evict page that was least frequently requested

All the above algorithms are not optimum!
Indeed all the algorithms are "online", i.e, the decisions can be made without knowing future requests. Online algorithms can not be optimum.
FIFO is not optimum
FIFO is not optimum

requests

1
2
3
4

FIFO

✘
FIFO is not optimum
FIFO is not optimum

requests

1
2
3
4
1
2
3
4
1
FIFO

1
2
3
4
1
FIFO is not optimum
FIFO is not optimum

requests

1
2
3
4
1

FIFO

[Diagram with requests and FIFO sequence]
FIFO is not optimum

requests

1
2
3
4

FIFO

1
2
3
4
FIFO is not optimum

requests

1
2
3
4
1

FIFO

1 1
2 1 2
3 1 2 3

1
FIFO is not optimum

requests

1
2
3
4
1
FIFO

1
1
2
1
2
3
4
2
3
FIFO is not optimum

requests

1
2
3
4

FIFO

1
2
3
4

1
2
3
4
FIFO is not optimum

<table>
<thead>
<tr>
<th>requests</th>
<th>FIFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
FIFO is not optimum

requests
1
2
3
4
misses = 5
FIFO is not optimum

<table>
<thead>
<tr>
<th>requests</th>
<th>FIFO</th>
<th>Furthest-in-Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

misses = 5
misses = 4
Optimum Offline Caching

Furthest-in-Future (FF)

- Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one.
- The algorithm is **not** an online algorithm, since the decision at a step depends on the request sequence in the future.
Furthest-in-Future (FF)

<table>
<thead>
<tr>
<th>requests</th>
<th>FIFO</th>
<th>Furthest-in-Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>× 1</td>
<td>× 1</td>
</tr>
<tr>
<td>2</td>
<td>× 1 2</td>
<td>× 1 2</td>
</tr>
<tr>
<td>3</td>
<td>× 1 2 3</td>
<td>× 1 2 3</td>
</tr>
<tr>
<td>4</td>
<td>× 4 2 3</td>
<td>× 1 4 3</td>
</tr>
<tr>
<td>1</td>
<td>× 4 1 3</td>
<td>✓ 1 4 3</td>
</tr>
</tbody>
</table>

misses = 5

misses = 4
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

☐

☐

☐

☐
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

x x x

1 1 1

5 5

1

4

Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

x x x

1 1 1

5 5

4
Example

requests

\[\begin{array}{cccccc}
1 & 5 & 4 & 2 & 5 & 3 \\
\end{array}\]
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

√ × × × ×
Example

requests

\[\begin{array}{ccccccccccc}
1 & 5 & 4 & 2 & 5 & 3 & 1 & 2 & 3 & 4 & 5 \\
\end{array} \]

\[\begin{array}{ccccccccccc}
\times & \times & \times & \times & \checkmark \\
1 & 1 & 1 & 2 & 2 \\
\times & \times & 5 & 5 & 5 & 5 \\
\times & \times & 4 & 4 & 4 \\
\end{array} \]
Example

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
</table>

requests

- [x] 1
- [x] 1
- [x] 5
- [x] 5
- [✓] 1
- [✓] 1
- [✓] 5
- [✓] 5
- [✓] 5
- [✓] 5
- [✓] 3
- [✓] 4
- [✓] 4
- [✓] 4
- [✓] 4
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

X X X X ✔ X

1 1 1 2 2 2

5 5 5 5 3 3

4 4 4 4
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

1 1 1 2 2 2 2

5 5 5 5 3 3

4 4 4 4 4 4
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

x x x x ✓ x ✓ ✓

1 1 1 2 2 2 2 2

5 5 5 5 3 3 3

4 4 4 4 4 4
Example

requests

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 2 & 5 & 3 & 2 & 4 & 3 & 1 & 5 & 3 \\
\xmark & \xmark & \xmark & \xmark & \checkmark & \xmark & \checkmark & \checkmark & \checkmark \\
\ & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\ & \ & \ & 5 & 5 & 5 & 5 & 3 & 3 & 3 \\
\ & \ & \ & \ & 4 & 4 & 4 & 4 & 4 & 4 \\
\end{array}
\]
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

× × × × ✓ ✓ ✓ ✓ ✓

1 1 1 2 2 2 2 2 2 2

5 5 5 5 5 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4
Example

requests

1 5 4 2 5 3 2 4 3 1 5 3

x x x x x ✓ x ✓ ✓ ✓ x

☐ 1 1 1 2 2 2 2 2 2 1

☐ ☐ 5 5 5 5 3 3 3 3 3

☐ ☐ ☐ 4 4 4 4 4 4 4 4
Example

requests

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 2 & 5 & 3 & 2 & 4 & 3 & 1 & 5 & 3 \\
\end{array}
\]
Example

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
</table>

requests

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
</table>
Greedy Algorithm
- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm
- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
- Build up the solutions in steps
- At each step, make an *irrevocable* decision using a “reasonable” strategy

Analysis of Greedy Algorithm
- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
Offline Caching Problem

Input:
k: the size of cache
n: number of pages
$\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output:
$i_1, i_2, i_3, \cdots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$
- empty stands for an empty page
- “hit” means evicting no pages
Offline Caching Problem

Input:
- k: the size of cache
- n: number of pages
- $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests
- $p_1, p_2, \cdots, p_k \in \{\text{empty}\} \cup [n]$: initial set of pages in cache

Output:
- $i_1, i_2, i_3, \cdots, i_t \in \{\text{hit, empty}\} \cup [n]$
 - empty stands for an empty page
 - “hit” means evicting no pages
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe" (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1.
Proof.

1. S: any optimum solution
2. p^*: page in cache not requested until furthest in the future.
 - In the example, $p^* = 3$.

\[S \]
\[
\begin{array}{c}
1 \\
2 \\
3 \\
\end{array}
\]
Proof.

1. S: any optimum solution
2. p^*: page in cache not requested until furthest in the future.
 - In the example, $p^* = 3$.
3. Assume S evicts some $p' \neq p^*$ at time 1; otherwise done.
 - In the example, $p' = 2$.
Proof.

1. \(S \): any optimum solution
2. \(p^* \): page in cache not requested until furthest in the future.
 - In the example, \(p^* = 3 \).
3. Assume \(S \) evicts some \(p' \neq p^* \) at time 1; otherwise done.
 - In the example, \(p' = 2 \).
Proof.

Create $S':$ S' evicts $p^* (=3)$ instead of $p' (=2)$ at time 1.

After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p' (=2)$ and S contains $p^* (=3)$.

From now on, S' will "copy" S.
Proof.

Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.
Proof.

Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.
Proof.

Create S'. S' evicts $p^* (=3)$ instead of $p' (=2)$ at time 1.

After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p' (=2)$ and S contains $p^* (=3)$.
Proof.

4. Create S'. S' evicts $p^* (=3)$ instead of $p' (=2)$ at time 1.

5. After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p' (=2)$ and S contains $p^* (=3)$.

6. From now on, S' will “copy” S.

Proof.

1. **Create S'.** S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.
2. **After time 1,** cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.
3. **From now on,** S' will “copy” S.

![Cache State Diagram](image)
Proof.

4 Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.

5 After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6 From now on, S' will “copy” S.
Proof.

4 Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.

5 After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6 From now on, S' will “copy” S.
Proof.

4 Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.

5 After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6 From now on, S' will “copy” S.
Proof.

5. After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6. From now on, S' will “copy” S.

Proof.

5. After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6. From now on, S' will "copy" S.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

S:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

S':

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Proof.

4 Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.

5 After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

6 From now on, S' will “copy” S.
Proof.

1. **Create S'.** S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.

2. After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.

3. From now on, S' will “copy” S.

![Cache status example](image)
Proof.

1. Create S'. S' evicts $p^*(=3)$ instead of $p'(=2)$ at time 1.
2. After time 1, cache status of S and that of S' differ by only 1 page. S' contains $p'(=2)$ and S contains $p^*(=3)$.
3. From now on, S' will “copy” S.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>S'</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Proof.
Proof.

7 If \(S \) evicted the page \(p^* \), \(S' \) will evict the page \(p' \). Then, the cache status of \(S \) and that of \(S' \) will be the same. \(S \) and \(S' \) will be exactly the same from now on.
Proof.

7 If S evicted the page p^*, S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on.

8 Assume S did not evict $p^*(=3)$ before we see $p'(=2)$.
Proof.

7 If S evicted the page p^*, S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on on.

8 Assume S did not evict $p^*(=3)$ before we see $p'(=2)$.
Proof.

If S evicts $p^* (=3)$ for $p' (=2)$, then S won't be optimum. Assume otherwise. So far, S' has 1 less page-miss than S does. The status of S' and that of S only differ by 1 page.
Proof.

Consider the scenarios for S and S':

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For S', evicting page 2 results in:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S' is optimum because it does not have more page misses than S. The status of S' and S differ by 1 page.
Proof.

If S evicts $p^* (=3)$ for $p' (=2)$, then S won't be optimum. Assume otherwise. So far, S' has 1 less page-miss than S does. The status of S' and that of S only differ by 1 page.
Proof.

If S evicts $p^*(=3)$ for $p'(=2)$, then S won’t be optimum. Assume otherwise.
Proof.

If S evicts $p^* (=3)$ for $p'(=2)$, then S won’t be optimum. Assume otherwise.
Proof.

If \(S \) evicts \(p^*(=3) \) for \(p' (=2) \), then \(S \) won’t be optimum. Assume otherwise.
Proof.

If \(S \) evicts \(p^*(=3) \) for \(p'(=2) \), then \(S \) won’t be optimum. Assume otherwise.
Proof.

9 If S evicts $p^*(=3)$ for $p'(=2)$, then S' won’t be optimum. Assume otherwise.

10 So far, S' has 1 less page-miss than S does.
Proof.

9. If S evicts $p^*(=3)$ for $p'(=2)$, then S won’t be optimum. Assume otherwise.

10. So far, S' has 1 less page-miss than S does.

11. The status of S' and that of S only differ by 1 page.
Proof.
Proof.

We can then guarantee that S' make at most the same number of page-misses as S does.
Proof.

We can then guarantee that S' make at most the same number of page-misses as S does.

Idea: if S has a page-hit and S' has a page-miss, we use the opportunity to make the status of S' the same as that of S.

\[\square \]
Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1.
Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.
Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.

Theorem The furthest-in-future strategy is optimum.
1: \textbf{for} $t \leftarrow 1$ to T \textbf{do}
2: \hspace{1em} \textbf{if} ρ_t is in cache \textbf{then} do nothing
3: \hspace{1em} \textbf{else if} there is an empty page in cache \textbf{then}
4: \hspace{1.5em} evict the empty page and load ρ_t in cache
5: \hspace{1em} \textbf{else}
6: \hspace{2em} $p^* \leftarrow$ page in cache that is not used furthest in the future
7: \hspace{2em} evict p^* and load ρ_t in cache
Q: How can we make the algorithm as fast as possible?

A: The running time can be made to be $O(n + T \log k)$.

For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. We can find the next time a page is requested easily.

Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future.
Q: How can we make the algorithm as fast as possible?

A:

- The running time can be made to be $O(n + T \log k)$.

For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. We can find the next time a page is requested easily. Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future.
Q: How can we make the algorithm as fast as possible?

A:
- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
Q: How can we make the algorithm as fast as possible?

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
- We can find the next time a page is requested easily.
Q: How can we make the algorithm as fast as possible?

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
- We can find the next time a page is requested easily.
- Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future.
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

P1:

| 1 | 10 |

P2:

| 4 | 7 |

P3:

| 6 | 9 | 12 |

P4:

| 3 | 8 |

P5:

| 2 | 5 | 11 |

priority queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

46/80
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processes

- P1: 1 10
- P2: 4 7
- P3: 6 9 12
- P4: 3 8
- P5: 2 5 11
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

P1: 1 10
P2: 4 7
P3: 6 9 12
P4: 3 8
P5: 2 5 11

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

46/80
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10</td>
</tr>
</tbody>
</table>

Process States

- **P1:** 0:10
- **P2:** 4:7
- **P3:** 6:9:12
- **P4:** 3:8
- **P5:** 2:5:11
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10</td>
</tr>
<tr>
<td>P4</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Pages (Example)

- **P1:** 1, 10
- **P2:** 4, 7
- **P3:** 6, 9, 12
- **P4:** 3, 8
- **P5:** 2, 5, 11
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10</td>
</tr>
<tr>
<td>P5</td>
<td>5</td>
</tr>
</tbody>
</table>

Pages

- P1: [1, 10]
- P2: [4, 7]
- P3: [6, 9, 12]
- P4: [3, 8]
- P5: [2, 5, 11]
The diagram illustrates the operation of a priority queue with the following sequence of events:

- **Pages**: P1, P5, P4, P2, P5, P3, P2, P4, P3, P1, P5, P3
- **Priority Queue**
 - **Pages**
 - P1: 10
 - P2: 7
 - P3: 12
 - P4: 8
 - P5: 5
 - **Priority Values**
 - P1: 10
 - P5: 5

The time axis ranges from 0 to 12, with specific pages marked at each time point.
A diagram illustrating a priority queue with pages and their times. The priority queue contains pages and their priority values. The pages are ordered by their priority values.
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>5</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

P1: 1 10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>P5</td>
<td>5</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
</tbody>
</table>
The diagram shows a priority queue with the following pages and associated priority values:

<table>
<thead>
<tr>
<th>Pages</th>
<th>Pages</th>
<th>Priority Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>P1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

The time and pages columns track the progression of time and page access, respectively.
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

P1: 1 10
P2: 4 7
P3: 6 9 12
P4: 3 8
P5: 2 5 11

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>P5</td>
<td>11</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
</tbody>
</table>
The table represents a priority queue with pages and their corresponding priority values.

- **Pages:** P1, P2, P3, P4, P5
- **Priority Queue Values:**
 - P2: 7
 - P5: 11
 - P4: 8

The table shows the allocation of pages to processes over time:

<table>
<thead>
<tr>
<th>Time</th>
<th>Pages</th>
<th>Priority Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>P5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>P4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>P5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>P5</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>P1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>P2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>P5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

P1:
1 10

P2:
4 7

P3:
6 9 12

P4:
3 8

P5:
2 5 11

priority queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>7</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

P1:
- Time: 1
- Pages: 10

P2:
- Time: 4
- Pages: 7

P3:
- Time: 6
- Pages: 9, 12

P4:
- Time: 3
- Pages: 8

P5:
- Time: 2
- Pages: 5

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>8</td>
</tr>
</tbody>
</table>

Pages Accessed:

- P1: 1 10
- P2: 4 7
- P3: 6 9 12
- P4: 3 8
- P5: 2 5 11

Green Check: Pages 10 and 8 are accessed correctly.

Red X: Pages 1, 4, 6, 9, and 2 are accessed incorrectly.
The diagram represents a priority queue system with pages and their corresponding times.

Priority Queue

<table>
<thead>
<tr>
<th>Pages</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
</tr>
<tr>
<td>P3</td>
<td>6</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
</tr>
<tr>
<td>P5</td>
<td>2</td>
</tr>
</tbody>
</table>

Time Table

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Values

<table>
<thead>
<tr>
<th>Pages</th>
<th>Priority Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>

The green checkmarks indicate the pages that have been assigned to processes, while the red Xs mark the pages that are not currently being accessed.
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue:

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(\infty)</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>(\infty)</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

Priority queue:

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

P1: 1 10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>
The diagram illustrates a priority queue with pages and their corresponding priority values.

- **Pages**: P1, P2, P3, P4, P5
- **Time**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

The priority queue is shown with the following values:

<table>
<thead>
<tr>
<th>Pages</th>
<th>Priority Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>

The diagram also shows the state of the pages over time, indicated by checkmarks and red crosses.
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>

Pages:
- P1: 1 10
- P2: 4 7
- P3: 6 9 12
- P4: 3 8
- P5: 2 5 11
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

P1: \[\begin{array}{cc}
1 & 10 \\
\end{array}\]

P2: \[\begin{array}{cc}
4 & 7 \\
\end{array}\]

P3: \[\begin{array}{cc}
6 & 9 & 12 \\
\end{array}\]

P4: \[\begin{array}{cc}
3 & 8 \\
\end{array}\]

P5: \[\begin{array}{ccc}
2 & 5 & 11 \\
\end{array}\]

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>(\infty)</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>(\infty)</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>pages</td>
<td>P1</td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>

Pages Accessed

- P1: 1, 10
- P2: 4, 7
- P3: 6, 9, 12
- P4: 3, 8
- P5: 2, 5, 11
<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>pages</td>
<td>P1</td>
<td>P5</td>
<td>P4</td>
<td>P2</td>
<td>P5</td>
<td>P3</td>
<td>P2</td>
<td>P4</td>
<td>P3</td>
<td>P1</td>
<td>P5</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue

<table>
<thead>
<tr>
<th>pages</th>
<th>priority values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>∞</td>
</tr>
<tr>
<td>P3</td>
<td>∞</td>
</tr>
<tr>
<td>P4</td>
<td>∞</td>
</tr>
</tbody>
</table>
1: for every $p \leftarrow 1$ to n do
2: \hspace{1em} $times[p] \leftarrow$ array of times in which p is requested, in increasing order \hspace{1em} \triangleright put ∞ at the end of array
3: \hspace{1em} $pointer[p] \leftarrow 1$
4: $Q \leftarrow$ empty priority queue
5: for every $t \leftarrow 1$ to T do
6: \hspace{1em} $pointer[\rho_t] \leftarrow pointer[\rho_t] + 1$
7: \hspace{1em} if $\rho_t \in Q$ then
8: \hspace{2em} Q.increase-key($\rho_t, times[\rho_t, pointer[\rho_t]]$), print “hit”, continue
9: \hspace{1em} if Q.size() < k then
10: \hspace{2em} print “load ρ_t to an empty page”
11: \hspace{1em} else
12: \hspace{2em} $p \leftarrow Q$.extract-max(), print “evict p and load ρ_t”
13: \hspace{2em} Q.insert($\rho_t, times[\rho_t, pointer[\rho_t]]$) \hspace{1em} \triangleright add ρ_t to Q with key value $times[\rho_t, pointer[\rho_t]]$
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
Let V be a ground set of size n.

Def. A **priority queue** is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations:

- **insert** ($v, \text{key-value}$): insert an element $v \in V \setminus U$, with associated key value key-value.
- **decrease_key** ($v, \text{new_key-value}$): decrease the key value of an element $v \in U$ to new_key-value.
- **extract_min**(): return and remove the element in U with the smallest key value.
- ...
Simple Implementations for Priority Queue

- $n = \text{size of ground set } V$

<table>
<thead>
<tr>
<th>data structures</th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_key</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted array</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Implementations for Priority Queue

- \(n = \) size of ground set \(V \)

<table>
<thead>
<tr>
<th>data structures</th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_key</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>sorted array</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Implementations for Priority Queue

- $n =$ size of ground set V

<table>
<thead>
<tr>
<th>data structures</th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_key</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Simple Implementations for Priority Queue

\(n = \text{size of ground set } V \)

<table>
<thead>
<tr>
<th>data structures</th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_key</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>sorted array</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>heap</td>
<td>(O(lg \ n))</td>
<td>(O(lg \ n))</td>
<td>(O(lg \ n))</td>
</tr>
</tbody>
</table>
Heap

The elements in a heap is organized using a complete binary tree:

- Nodes are indexed as \{1, 2, 3, \cdots, s\}
- Parent of node \(i\): \(\lfloor i/2 \rfloor\)
- Left child of node \(i\): \(2i\)
- Right child of node \(i\): \(2i + 1\)
A heap H contains the following fields:

- s: size of U (number of elements in the heap)
- $A[i], 1 \leq i \leq s$: the element at node i of the tree
- $p[v], v \in U$: the index of node containing v
- $key[v], v \in U$: the key value of element v

Diagram:

- $s = 5$
- $A = ('f', 'g', 'c', 'e', 'b')$
- $p['f'] = 1, p['g'] = 2, p['c'] = 3, p['e'] = 4, p['b'] = 5$
Heap

The following heap property is satisfied:

- for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \leq key[A[j]]$.

A heap. Numbers in the circles denote key values of elements.
\text{insert}(v, \text{key-value})
$\text{insert}(v, \text{key_value})$
\text{insert}(v, key_value)
\textbf{insert}(v, key_value)
\textbf{insert}(v, \textit{key_value})
insert\((v, \text{key}_\text{value})\)

1: \[s \leftarrow s + 1 \]
2: \[A[s] \leftarrow v \]
3: \[p[v] \leftarrow s \]
4: \[\text{key}[v] \leftarrow \text{key}_\text{value} \]
5: \[\text{heapify_up}(s) \]

heapify-up\((i)\)

1: \textbf{while } i > 1 \textbf{ do}
2: \[j \leftarrow \lfloor i/2 \rfloor \]
3: \[\textbf{if } \text{key}[A[i]] < \text{key}[A[j]] \textbf{ then} \]
4: \[\text{swap } A[i] \text{ and } A[j] \]
5: \[p[A[i]] \leftarrow i, \ p[A[j]] \leftarrow j \]
6: \[i \leftarrow j \]
7: \[\textbf{else } \text{break} \]
extract_min()
extract_min()
`extract_min()`
extract_min()
extract_min()
extract_min()
extract_min()

1: ret ← A[1]
3: p[A[1]] ← 1
4: s ← s − 1
5: if s ≥ 1 then
6: heapify_down(1)
7: return ret

heapify-down(i)

1: while 2i ≤ s do
2: if 2i = s or
3: key[A[2i]] ≤ key[A[2i + 1]] then
4: j ← 2i
5: else
6: j ← 2i + 1
7: if key[A[j]] < key[A[i]] then
8: swap A[i] and A[j]
10: i ← j
11: else break

decrease_key(v, key_value)

1: key[v] ← key_value
2: heapify-up(p[v])
• Running time of \texttt{heapify_up} and \texttt{heapify_down}: $O(lg\ n)$
- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$
- Running time of heapify_up and heapify_down: \(O(lg\ n)\)
- Running time of insert, exact_min and decrease_key: \(O(lg\ n)\)

<table>
<thead>
<tr>
<th>data structures</th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_key</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>sorted array</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>heap</td>
<td>(O(lg\ n))</td>
<td>(O(lg\ n))</td>
<td>(O(lg\ n))</td>
</tr>
</tbody>
</table>
Two Definitions Needed to Prove that the Procedures Maintain Heap Property

\textbf{Def.} We say that H is almost a heap except that $key[A[i]]$ is too small if we can increase $key[A[i]]$ to make H a heap.

\textbf{Def.} We say that H is almost a heap except that $key[A[i]]$ is too big if we can decrease $key[A[i]]$ to make H a heap.
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
8 letters a, b, c, d, e, f, g, h in a language

need to encode a message using bits

idea: use 3 bits per letter

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

deacfg → 011100000010101110

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?
Q: If some letters appear more frequently than the others, can we have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient.

Idea
- using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used.
Q: What is the issue with the following encoding scheme?

- a: 0
- b: 1
- c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to a or c. Solution: Use prefix codes to guarantee a unique decoding.
Q: What is the issue with the following encoding scheme?

- a: 0
- b: 1
- c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c. Use prefix codes to guarantee a unique decoding.
Q: What is the issue with the following encoding scheme?
- \(a: 0 \)
- \(b: 1 \)
- \(c: 00 \)

A: Can not guarantee a unique decoding. For example, 00 can be decoded to \(aa \) or \(c \).

Solution
Use prefix codes to guarantee a unique decoding.
Def. A prefix code for a set S of letters is a function $\gamma : S \rightarrow \{0, 1\}^*$ such that for two distinct $x, y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.
Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma : S \rightarrow \{0, 1\}^*$ such that for two distinct $x, y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

![Diagram of prefix codes with binary tree representation]
Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.
Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
<td></td>
</tr>
</tbody>
</table>
Prefix Codes Guarantee Unique Decoding

- **Reason:** there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 000100111000000001011110100001001
Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001100000001011110100001001

- c
Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

0001/001/100000001011110100001001

cd
Prefix Codes Guarantee Unique Decoding

- **Reason:** there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

0001/001/100/000001011110100001001

cad
Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01011110100001001
- cadb
Prefix Codes Guarantee Unique Decoding

- **Reason:** there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/011110100001001
- cadbh
Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/1101/0000/1001
- cadbh
Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/01/11/10100001001
- cadbhhe
Prefix Codes Guarantee Unique Decoding

- **Reason:** there is only one way to cut the first code.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/01/11/1010/0001001
- cadbhhef
Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/01/11/1010/0001/001
- cadbhhefcd
Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>0000</td>
<td>0001</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>1010</td>
<td>1011</td>
<td>01</td>
</tr>
</tbody>
</table>

- 0001/001/100/0000/01/01/11/1010/0001/001/
- cadbhhefca
Properties of Encoding Tree

Rooted binary tree
Left edges labelled 0 and right edges labelled 1
A leaf corresponds to a code for some letter
If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes
Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message
Properties of Encoding Tree

- Rooted binary tree

Best Prefix Codes

Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the message
Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1

Best Prefix Codes

Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message
Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children
Properties of Encoding Tree
- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes
Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message
Example

<table>
<thead>
<tr>
<th>letters</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequencies</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Scheme 1

```
    a
   /\  
  b  d  
 /    /  
b    c    e
```

Scheme 2

```
    a
   /\  
  b  d
 /    
 c    e
```

Scheme 3

```
    a
   /\  
  e  d
 /    
 b    c
```
example

<table>
<thead>
<tr>
<th>letters</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequencies</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>scheme 1 length</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>total = 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scheme 2 length</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>total = 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scheme 3 length</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>total = 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

scheme 1

Scheme 2

scheme 3
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?

Can we directly give a code for some letter?
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm
Example Input: \((a: 18, b: 3, c: 4, d: 6, e: 10)\)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.
Which Two Letters Can Be Safely Put Together As Brothers?

Focus on the “structure” of the optimum encoding tree

![Diagram of an encoding tree with two deepest leaves highlighted as brothers.](image-url)
Which Two Letters Can Be Safely Put Together As Brothers?

- Focus on the “structure” of the optimum encoding tree
- There are two deepest leaves that are brothers
Which Two Letters Can Be Safely Put Together As Brothers?

- Focus on the “structure” of the optimum encoding tree
- There are two deepest leaves that are brothers

best to put the two least frequent symbols here!
Which Two Letters Can Be Safely Put Together As Brothers?

- Focus on the “structure” of the optimum encoding tree
- There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.
Lemma There is an optimum encoding tree, where the two least frequent letters are brothers.
Lemma There is an optimum encoding tree, where the two least frequent letters are brothers.

- So we can irrevocably decide to make the two least frequent letters brothers.
Lemma There is an optimum encoding tree, where the two least frequent letters are brothers.

- So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?
Lemma There is an optimum encoding tree, where the two least frequent letters are brothers.

So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?

A: Yes, though it is not immediate to see why.
- f_x: the frequency of the letter x in the support.
- x_1 and x_2: the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

\[
\sum_{x \in S} f_x d_x = \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_1 d_1 + f_2 d_2
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_1 + f_2) d_1
\]
- \(f_x \): the frequency of the letter \(x \) in the support.
- \(x_1 \) and \(x_2 \): the two letters we decided to put together.
- \(d_x \) the depth of letter \(x \) in our output encoding tree.

\[
\sum_{x \in S} f_x d_x
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}
\]
- \(f_x \): the frequency of the letter \(x \) in the support.
- \(x_1 \) and \(x_2 \): the two letters we decided to put together.
- \(d_x \) the depth of letter \(x \) in our output encoding tree.

\[
\sum_{x \in S} f_x d_x
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}
\]

Def: \(f_{x'} = f_{x_1} + f_{x_2} \)
- f_x: the frequency of the letter x in the support.
- x_1 and x_2: the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

\[
\sum_{x \in S} f_x d_x
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}
\]

\[
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f'_{x'} (d'_{x'} + 1)
\]

Def: $f_{x'} = f_{x_1} + f_{x_2}$
\(f_x \): the frequency of the letter \(x \) in the support.
\(x_1 \) and \(x_2 \): the two letters we decided to put together.
\(d_x \) the depth of letter \(x \) in our output encoding tree.

\[
\begin{align*}
\sum_{x \in S} f_x d_x &= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2} \\
&= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1} \\
&= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f' (d_x + 1) \\
&= \sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x + f_{x'}
\end{align*}
\]

Def: \(f_{x'} = f_{x_1} + f_{x_2} \)
- f_x: the frequency of the letter x in the support.
- x_1 and x_2: the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

$$
\sum_{x \in S} f_x d_x
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2})d_{x_1}
= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_x'(d_{x'} + 1)
= \sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x + f_x'
$$

Def: $f_{x'} = f_{x_1} + f_{x_2}$
In order to minimize
\[\sum_{x \in S} f_x d_x, \]
we need to minimize
\[\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x, \]
subject to that \(d \) is the depth function for an encoding tree of \(S \setminus \{x_1, x_2\} \).

- This is exactly the best prefix codes problem, with letters \(S \setminus \{x_1, x_2\} \cup \{x'\} \) and frequency vector \(f \)!
Example
Example

A 27 B 15 C 11 D 9 E 8 F 5

13
Example
Example
Example
Example
Example
Example

A : 00
B : 10
C : 010
D : 011
E : 110
F : 111

A : 27
B : 15
C : 11
D : 9
E : 8
F : 5
Def. The codes given the greedy algorithm is called the Huffman codes.
Def. The codes given the greedy algorithm is called the **Huffman codes**.

Huffman(S, f)

1. **while** $|S| > 1$ **do**
2. let x_1, x_2 be the two letters with the smallest f values
3. introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$
4. let x_1 and x_2 be the two children of x'
5. $S \leftarrow S \setminus \{x_1, x_2\} \cup \{x'\}$
6. **return** the tree constructed
Algorithm using Priority Queue

Huffman(S, f)

1: $Q \leftarrow$ build-priority-queue(S)
2: while Q.size > 1 do
3: $x_1 \leftarrow Q$.extract-min()
4: $x_2 \leftarrow Q$.extract-min()
5: introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$
6: let x_1 and x_2 be the two children of x'
7: Q.insert(x', $f_{x'}$)
8: return the tree constructed
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy
Summary for Greedy Algorithms

Greedy Algorithm
- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

- Interval scheduling problem: schedule the job \(j^* \) with the earliest deadline
Summary for Greedy Algorithms

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

- Interval scheduling problem: schedule the job j^* with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

- Interval scheduling problem: schedule the job j^* with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future
- Huffman codes: make the two least frequent letters brothers
Summary for Greedy Algorithms

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is “safe” if there is always an optimum solution that “agrees with” the decision made according to the strategy.
Summary for Greedy Algorithms

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is “safe” if there is always an optimum solution that “agrees with” the decision made according to the strategy.
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision
- Change S slightly to another optimum solution S' that agrees with the decision
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision
- Change S slightly to another optimum solution S' that agrees with the decision
- Interval scheduling problem: exchange j^* with the first job in an optimal solution
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision
- Change S slightly to another optimum solution S' that agrees with the decision
 - Interval scheduling problem: exchange j^* with the first job in an optimal solution
 - Offline caching: a complicated “copying” algorithm
Proving a Strategy is Safe

- Take an arbitrary optimum solution S
- If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision
- Change S slightly to another optimum solution S' that agrees with the decision
 - Interval scheduling problem: exchange j^* with the first job in an optimal solution
 - Offline caching: a complicated “copying” algorithm
 - Huffman codes: move the two least frequent letters to the deepest leaves.
Analysis of Greedy Algorithm

- **Prove that the reasonable strategy is “safe”** *(key)*
- **Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)*
Summary for Greedy Algorithms

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Interval scheduling problem: remove j^* and the jobs it conflicts with
Summary for Greedy Algorithms

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial
Analysis of Greedy Algorithm

- Prove that the reasonable strategy is “safe” (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial
- Huffman codes: merge two letters into one