Consider the interval scheduling problem given by a set \(\{1, 2, \cdots, n\} \) of activities, each activity \(i \) with a starting time \(s_i \) and finish time \(f_i \). Decide if the following strategy for designing greedy algorithm is safe of not:

- Select the longest job \(i \) (i.e, the \(i \) with the largest \(f_i - s_i \)). If \(i \) is conflicts with some other job, then we do not schedule \(i \); otherwise we schedule \(i \).
Maximum Independent Set on Trees

Given a tree $T = (V, E)$, find the maximum independent set of the tree. For example, maximum independent set of the tree of following tree has size 7.

![Diagram of a tree with labeled vertices](image)

Figure: The red vertices show that the maximum independent set of the tree has size 7.

Design an efficient greedy algorithm to solve the problem.
Weighted Completion Time

Given a set of n jobs $\{1, 2, 3, \cdots, n\}$, each job j with a processing time $t_j > 0$ and a weight $w_j > 0$, we need to schedule the n jobs on a machine in some order. Let C_j be the completion time of j on in the schedule. Then the goal of the problem is to find a schedule to minimize the weighted sum of the completion times, i.e, $\sum_{j=1}^{n} w_j C_j$.

Example. Suppose there are two jobs: the first takes time $t_1 = 1$ and has weight $w_1 = 10$, while the second job takes time $t_2 = 3$ and has weight $w_2 = 2$. Then doing job 1 first would yield a weighted completion time of $10 \cdot 1 + 2 \cdot 4 = 18$, while doing the second job first would yield the larger weighted completion time of $10 \cdot 4 + 2 \cdot 3 = 46$. Design an efficient greedy algorithm to solve the problem.
Driving from \(A \) to \(B \) using with minimum number of gas stops

You wish to drive from point \(A \) to point \(B \) along a highway minimizing the time that you are stopped for gas. You are told beforehand the capacity number \(L \) of miles you can drive when the tank is full, the locations \(x_1, \ldots, x_n \) of the gas stations along the highway, where \(x_i \) indicates the distance from the \(i \)-th gas station from \(A \). Design a greedy algorithm to compute the minimum number of times you need to fill the gas tank.
Balanced Strings

A string of “(” and “)” is said to be “balanced”, if it satisfies the recursive definition:

- The empty string “” is balanced.
- If A is balanced then (A) is balanced.
- If A and B are balanced, then AB is balanced.

For example, ”((())())” is balanced.

Problem: Given a string of “(” and “)”, our goal is to remove the minimum number of characters so that the residual string is a balanced.

- Example: ()((())())()
Balanced Strings

A string of “(” and “)” is said to be “balanced”, if it satisfies the recursive definition:

- The empty string “” is balanced.
- If A is balanced then (A) is balanced.
- If A and B are balanced, then AB is balanced.

For example, ”((()))” is balanced.

Problem: Given a string of “(” and “)”, our goal is to remove the minimum number of characters so that the residual string is a balanced.

- Example: $(())((())())$