CSE 431/531: Algorithm Analysis and Design (Spring 2020)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
CSE 431/531: Algorithm Analysis and Design

- **Time and location:**
 - MoWeFr, 9:00-9:50am
 - Knox 110.

- **Instructor:**
 - Shi Li, shil@buffalo.edu, Davis 328
 - Office hours: TBD via poll
You **should** already have/know:

- Mathematical Background
 - Reasoning, inductions, probabilities
- Basic data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement (occasionally)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 · · ·
- NP-completeness
Tentative Schedule (42 Lectures)

See the course webpage.
Textbook (Highly Recommended):

Other Reference Books
Highly recommended: read the correspondent sections from the textbook (or reference book) before classes

Sections for each lecture can be found on the course webpage.

Slides and example problems for recitations will be posted on the course webpage before class
Grading

- 40% for homeworks
 - 6 points \times 5 theory homeworks
 - 10 points for programming homework

- 60% for mid-term + final exams, score for two exams is

$$\max\{M \times 20\% + F \times 40\%, M \times 30\% + F \times 30\%\}$$

$$M, F \in [0, 100]$$
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

Use external resources
- Can’t Google or ask questions online for solutions
- Can’t read posted solutions from other algorithm course webpages

Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss
 (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted
- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - “F” for the course
 - lose financial support as TA/RA
 - case will be reported to the department and university

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0\)

Output: the greatest common divisor of \(a\) and \(b\)

Example:

- Input: 210, 270
- Output: 30

Algorithm: Euclidean algorithm

\[
gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)
\]

\[
(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)
\]
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, …
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, using a particular programming language.
Pseudo-Code:

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for \(j \leftarrow 2 \) to \(n \)
2. \(key \leftarrow A[j] \)
3. \(i \leftarrow j - 1 \)
4. while \(i > 0 \) and \(A[i] > key \)
5. \(A[i + 1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i + 1] \leftarrow key \)

- \(j = 6 \)
- \(key = 15 \)

12 15 21 35 53 59

\[\uparrow \]
\[i \]
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Correctness of Insertion Sort

 after $j = 1$: 53, 12, 35, 21, 59, 15
 after $j = 2$: 12, 53, 35, 21, 59, 15
 after $j = 3$: 12, 35, 53, 21, 59, 15
 after $j = 4$: 12, 21, 35, 53, 59, 15
 after $j = 5$: 12, 21, 35, 53, 59, 15
 after $j = 6$: 12, 15, 21, 35, 53, 59
Q1: what is the size of input?
A1: Running time as the function of size
possible definition of size:
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph

Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

A2: Worst-case analysis:
- Running time for size $n = \text{worst running time over all possible arrays of length } n$
Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!

Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any particular value.
Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

$$3n^3 + 2n^2 - 18n + 1028 \implies 3n^3 \implies n^3$$

$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

$$\frac{n^2}{100} - 3n^2 + 10 \implies \frac{n^2}{100} \implies n^2$$

$$\frac{n^2}{100} - 3n^2 + 10 = O(n^2)$$
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

To execute $a \leftarrow b + c$:
- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds
- they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$

- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.

- For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

```
insertion-sort(A, n)
1. for j ← 2 to n
2.   key ← A[j]
3.   i ← j - 1
4.   while i > 0 and A[i] > key
6.      i ← i - 1
7.   A[i + 1] ← key
```

- Worst-case running time for iteration \(j \) of the outer loop?
 Answer: \(O(j) \)

- Total running time = \(\sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j) \)
 = \(O\left(\frac{n(n+1)}{2} - 1\right) = O(n^2) \)
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
 Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Remember to sign up for Piazza.

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
- $100n - n^2 / 10 + 50$? No

We only consider asymptotically positive functions.

Why not (everywhere-)positive functions? Answer: for the sake of convenience.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

![Graph showing $f(n) = O(g(n))$ and $cg(n)$](image-url)
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let $c = 4$ and $n_0 = 50$, for every $n > n_0 = 50$, we have,

$$3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$$
$$= -n^2 + 40n \leq 0.$$
$$3n^2 + 2n \leq c(n^2 - 10n)$$
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. $$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conventions

- We use “\(f(n) = O(g(n))\)” to denote “\(f(n) \in O(g(n))\)”
- \(3n^2 + 2n = O(n^3 - 10n)\)
- \(3n^2 + 2n = O(n^2 + 5n)\)
- \(3n^2 + 2n = O(n^2)\)

“=” is asymmetric! Following equalities are wrong:

- \(O(n^3 - 10n) = 3n^2 + 2n\)
- \(O(n^2 + 5n) = 3n^2 + 2n\)
- \(O(n^2) = 3n^2 + 2n\)

- Analogy: Mike is a student. A student is Mike.
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0\}.$$

- In other words, $f(n) \in \Omega(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.

Ω-Notation: Asymptotic Lower Bound

Ω-Notation For a function \(g(n) \),

\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]
\(\Omega\)-Notation: Asymptotic Lower Bound

- Again, we use “=” instead of \(\in\).
- \(4n^2 = \Omega(n - 10)\)
- \(3n^2 - n + 10 = \Omega(n^2 - 20)\)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td></td>
</tr>
</tbody>
</table>

Theorem \(f(n) = O(g(n)) \iff g(n) = \Omega(f(n))\).
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- $f(n) = \Theta(g(n))$, then for large enough n, we have "$f(n) \approx g(n)$".
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \\
c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Theorem $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$
Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$

\[
f(n) = n^2
\]

\[
g(n) = \begin{cases}
1 & \text{if } n \text{ is odd} \\
n^3 & \text{if } n \text{ is even}
\end{cases}
\]
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.
Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we talk about running times.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

```
sum(A, n)

1. $S \leftarrow 0$
2. for $i \leftarrow 1$ to $n$
3. $S \leftarrow S + A[i]$
4. return $S$
```
Merge two sorted arrays
O(n) (Linear) Running Time

merge(B, C, n₁, n₂) \ \ B and C are sorted, with length n₁ and n₂

1. A ← []; i ← 1; j ← 1
2. while i ≤ n₁ and j ≤ n₂
3. if (B[i] ≤ C[j]) then
4. append B[i] to A; i ← i + 1
5. else
6. append C[j] to A; j ← j + 1
7. if i ≤ n₁ then append B[i..n₁] to A
8. if j ≤ n₂ then append C[j..n₂] to A
9. return A

Running time = O(n) where n = n₁ + n₂.
\(O(n \log n)\) Running Time

merge-sort\((A, n)\)

1. if \(n = 1\) then
2. \hspace{1em} return \(A\)
3. else
4. \hspace{1em} \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)\)
5. \hspace{1em} \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2 \rceil + 1..n], n - \lceil n/2 \rceil\right)\)
6. \hspace{1em} return \text{merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)
$O(n \log n)$ Running Time

- Merge-Sort

```
A[1..8]
```

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

(closest-pair\((x, y, n)\))

1. \(\text{bestd} \leftarrow \infty \)
2. for \(i \leftarrow 1 \) to \(n - 1 \)
3. for \(j \leftarrow i + 1 \) to \(n \)
4. \(d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2} \)
5. if \(d < \text{bestd} \) then
6. \(\text{besti} \leftarrow i, \text{bestj} \leftarrow j, \text{bestd} \leftarrow d \)
7. return \((\text{besti}, \text{bestj})\)

Closest pair can be solved in \(O(n \log n) \) time!
Multiply two matrices of size $n \times n$

```
matrix-multiplication(A, B, n)
1. \(C \leftarrow \text{matrix of size } n \times n, \text{ with all entries being } 0\)
2. \text{for } i \leftarrow 1 \text{ to } n
3. \quad \text{for } j \leftarrow 1 \text{ to } n
4. \quad \quad \text{for } k \leftarrow 1 \text{ to } n
5. \quad \quad \quad \quad \quad C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]
6. \text{return } C
```
\(O(n^k)\) Running Time for Integer \(k \geq 4\)

Def. An independent set of a graph \(G = (V, E)\) is a subset \(S \subseteq V\) of vertices such that for every \(u, v \in S\), we have \((u, v) \notin E\).

Input: graph \(G = (V, E)\)

Output: whether there is an independent set of size \(k\)
$O(n^k)$ Running Time for Integer $k \geq 4$

Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

```
function independent-set(G = (V, E))
    for every set $S \subseteq V$ of size $k$
        $b \leftarrow$ true
        for every $u, v \in S$
            if $(u, v) \in E$ then $b \leftarrow$ false
        if $b$ return true
    return false
```

Running time $= O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume k is a constant)
Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

```
max-independent-set(G = (V, E))
```

```python
1. \( R \leftarrow \emptyset \)
2. for every set \( S \subseteq V \)
3. \( b \leftarrow \text{true} \)
4. for every \( u, v \in S \)
5. \( \text{if } (u, v) \in E \text{ then } b \leftarrow \text{false} \)
6. \( \text{if } b \text{ and } |S| > |R| \text{ then } R \leftarrow S \)
7. return \( R \)
```

Running time = \(O(2^n n^2) \).
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian($G = (V, E)$)

1. for every permutation (p_1, p_2, \cdots, p_n) of V
2. $b \leftarrow \text{true}$
3. for $i \leftarrow 1$ to $n - 1$
4. \hspace{1em} if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow \text{false}$
5. \hspace{1em} if $(p_n, p_1) \notin E$ then $b \leftarrow \text{false}$
6. \hspace{1em} if b then return (p_1, p_2, \cdots, p_n)
7. return “No Hamiltonian Cycle”

Running time = $O(n! \times n)$
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:

```
3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```
$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

```plaintext
binary-search($A, n, t$)

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3.     $k \leftarrow \lfloor (i + j)/2 \rfloor$
4.     if $A[k] = t$ return true
5.     if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false
```

Running time $= O(\log n)$
Comparing the Orders

Sort the functions from smallest to largest asymptotically
\(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)

\(\log n = O(n) \)
\(n = O(n^2) \)
\(n = O(n \log n) \)
\(n \log n = O(n^2) \)
\(n^2 = O(n!) \)
\(n^2 = O(2^n) \)
\(2^n = O(n!) \)
\(2^n = O(e^n) \)
\(e^n = O(n!) \)
\(n! = O(n^n) \)
Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.