CSE 431/531: Algorithm Analysis and Design (Spring 2020)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Syllabus
2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
3. Asymptotic Notations
4. Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
CSE 431/531: Algorithm Analysis and Design

- Time and location:
 - MoWeFr, 9:00-9:50am
 - Knox 110.

- Instructor:
 - Shi Li, shil@buffalo.edu, Davis 328
 - Office hours: TBD via poll
You should already have/know:

- Mathematical Background
 - Reasoning, inductions, probabilities
- Basic data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement (occasionally)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - · · ·
- NP-completeness
Tentative Schedule (42 Lectures)

See the course webpage.
Textbook (Highly Recommended):

- **Algorithm Design**, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

Highly recommended: read the correspondent sections from the textbook (or reference book) before classes

- Sections for each lecture can be found on the course webpage.
- Slides and example problems for recitations will be posted on the course webpage before class
Grading

- 40% for homeworks
 - 6 points \times 5 theory homeworks
 - 10 points for programming homework
- 60% for mid-term + final exams, score for two exams is
 \[\max\{M \times 20\% + F \times 40\%, M \times 30\% + F \times 30\%\} \]
 \[M, F \in [0, 100] \]
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted
- Mid-Term and Final Exam will be closed-book

- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - “F” for the course
 - lose financial support as TA/RA
 - case will be reported to the department and university

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm solves a computational problem if it produces the correct output for any given input.

Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

- **Input:** 210, 270
- **Output:** 30

- **Algorithm:** Euclidean algorithm
- \[\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60) \]
- \[(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)\]
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- **Algorithms:** insertion sort, merge sort, quicksort, …
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- **Algorithm**: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- **Computer program**: “concrete”, implementation of algorithm, using a particular programming language
Pseudo-Code:

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus
2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
3. Asymptotic Notations
4. Common Running times
Sorting Problem

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for $j \leftarrow 2 \text{ to } n$
2. \hspace{1cm} $key \leftarrow A[j]$
3. \hspace{1cm} $i \leftarrow j - 1$
4. \hspace{1cm} while $i > 0$ and $A[i] > key$
5. \hspace{2cm} $A[i + 1] \leftarrow A[i]$
6. \hspace{1cm} $i \leftarrow i - 1$
7. \hspace{1cm} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

<table>
<thead>
<tr>
<th>12</th>
<th>15</th>
<th>21</th>
<th>35</th>
<th>53</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrow</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Syllabus
2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
3. Asymptotic Notations
4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Correctness of Insertion Sort

Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

After $j = 1$: 53, 12, 35, 21, 59, 15
After $j = 2$: 12, 53, 35, 21, 59, 15
After $j = 3$: 12, 35, 53, 21, 59, 15
After $j = 4$: 12, 21, 35, 53, 59, 15
After $j = 5$: 12, 21, 35, 53, 59, 15
After $j = 6$: 12, 15, 21, 35, 53, 59
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
A1: Running time as the function of size
possible definition of size:
- Sorting problem: # integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: # edges in graph

Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

A2: Worst-case analysis:
- Running time for size $n = \text{worst running time over all possible arrays of length } n$
Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!

Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any particular value.
Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

\[
3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3
\]

\[
3n^3 + 2n^2 - 18n + 1028 = O(n^3)
\]

\[
n^2/100 - 3n^2 + 10 \Rightarrow n^2/100 \Rightarrow n^2
\]

\[
n^2/100 - 3n^2 + 10 = O(n^2)
\]
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

to execute $a \leftarrow b + c$:

- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds

they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$

Does not tell which algorithm is faster for a specific n!
Algorithm 2 will eventually beat algorithm 1 as n increases.

- For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

insertion-sort \((A, n)\)

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)

 5. \(A[i + 1] \leftarrow A[i]\)

 6. \(i \leftarrow i - 1\)

 7. \(A[i + 1] \leftarrow key\)

- Worst-case running time for iteration \(j\) of the outer loop?

 Answer: \(O(j)\)

- Total running time = \(\sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j)\)

 \(= O\left(\frac{n(n+1)}{2} - 1\right) = O(n^2)\)
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
 - Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus
2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
3. Asymptotic Notations
4. Common Running times
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
- $100n - n^2/10 + 50$? No

We only consider asymptotically positive functions.

Why not (everywhere-)positive functions? Answer: for the sake of convenience.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. $$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

![Graph illustrating O-Notation](image-url)
O-Notation: Asymptotic Upper Bound

O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c > 0 \) and every large enough \(n \).

- \(3n^2 + 2n \in O(n^2 - 10n) \)

Proof.

Let \(c = 4 \) and \(n_0 = 50 \), for every \(n > n_0 = 50 \), we have,

\[
3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n) = -n^2 + 40n \leq 0.
\]

\[
3n^2 + 2n \leq c(n^2 - 10n)
\]
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asymptotic Notations

- O: **Big O** notation represents an upper bound.
- Ω: **Big Omega** notation represents a lower bound.
- Θ: **Big Theta** notation represents a tight bound.

Comparison Relations

- $O \subseteq \Omega$,
- $O \cap \Omega = \Theta$.
Conventions

- We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)

“=” is asymmetric! Following equalities are wrong:
- \(O(n^3 - 10n) = 3n^2 + 2n \)
- \(O(n^2 + 5n) = 3n^2 + 2n \)
- \(O(n^2) = 3n^2 + 2n \)

Analogy: Mike is a student. A student is Mike.
\(\Omega\)-Notation: Asymptotic Lower Bound

\(O\)-Notation For a function \(g(n)\),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

\(\Omega\)-Notation For a function \(g(n)\),

\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in \Omega(g(n))\) if \(f(n) \geq cg(n)\) for some \(c\) and large enough \(n\).
\(\Omega \)-Notation: Asymptotic Lower Bound

\(\Omega \)-Notation For a function \(g(n) \),
\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]
Ω-Notation: Asymptotic Lower Bound

Again, we use “=” instead of ∈.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>

Theorem $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
\(\Theta\)-Notation: Asymptotic Tight Bound

\(\Theta\)-Notation For a function \(g(n)\),
\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \\
c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(f(n) = \Theta(g(n))\), then for large enough \(n\), we have “\(f(n) \approx g(n)\)”.

![Diagram showing \(f(n) = \Theta(g(n))\) with bounding curves \(c_1 g(n)\) and \(c_2 g(n)\) for large enough \(n\).]
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0\}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3 + 100} = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Theorem $f(n) = \Theta(g(n))$ if and only if

- $f(n) = O(g(n))$ and
- $f(n) = \Omega(g(n))$.

Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g \text{ and } f \geq g$
- $f \leq g \text{ or } f \geq g$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$

Incorrect Analogy

- $f(n) = O(g(n)) \text{ or } g(n) = O(f(n))$
Incorrect Analogy

- \(f(n) = O(g(n)) \) or \(g(n) = O(f(n)) \)

\[
\begin{align*}
 f(n) &= n^2 \\
 g(n) &= \begin{cases}
 1 & \text{if } n \text{ is odd} \\
 n^3 & \text{if } n \text{ is even}
 \end{cases}
\end{align*}
\]
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.
Notice that \(O \) denotes asymptotic upper bound.

- \(n^2 + 2n = O(n^3) \) is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is \(O(n^4) \).
- We say: the running time of the insertion sort algorithm is \(O(n^2) \) and the bound is tight.
- We do not use \(\Omega \) and \(\Theta \) very often when we talk about running times.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

\[
\text{sum}(A, n) \\
\begin{array}{l}
1. \quad S \leftarrow 0 \\
2. \quad \text{for } i \leftarrow 1 \text{ to } n \\
3. \quad S \leftarrow S + A[i] \\
4. \quad \text{return } S
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}
\]
$O(n)$ (Linear) Running Time

merge(B, C, n_1, n_2) \ \ \ B and C are sorted, with length n_1 and n_2

1. $A \leftarrow []$; $i \leftarrow 1$; $j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3. \quad if $(B[i] \leq C[j])$ then
4. \quad \quad append $B[i]$ to A; $i \leftarrow i + 1$
5. \quad else
6. \quad \quad append $C[j]$ to A; $j \leftarrow j + 1$
7. if $i \leq n_1$ then append $B[i..n_1]$ to A
8. if $j \leq n_2$ then append $C[j..n_2]$ to A
9. return A

Running time = $O(n)$ where $n = n_1 + n_2$.
$O(n \log n)$ Running Time

merge-sort(A, n)

1. if $n = 1$ then
2. \hspace{1em} return A
3. else
4. \hspace{1em} $B \leftarrow$ merge-sort$(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)$
5. \hspace{1em} $C \leftarrow$ merge-sort$(A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor)$
6. \hspace{1em} return merge$(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)$
$O(n \log n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $= O(n \log n)$
$O(n^2)$ (Quadratic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest

`closest-pair(x, y, n)`

1. `bestd ← ∞`
2. for $i ← 1$ to $n - 1$
3. for $j ← i + 1$ to n
4. $d ← \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5. if $d < bestd$ then
6. `besti ← i, bestj ← j, bestd ← d`
7. return `(besti, bestj)`

Closest pair can be solved in $O(n \log n)$ time!
Multiply two matrices of size $n \times n$

\[
\text{matrix-multiplication}(A, B, n)
\]

1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to n
3. for $j \leftarrow 1$ to n
4. for $k \leftarrow 1$ to n
5. $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return C
$O(n^k)$ Running Time for Integer $k \geq 4$

Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k
$O(n^k)$ Running Time for Integer $k \geq 4$

Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

independent-set($G = (V, E)$)

1. for every set $S \subseteq V$ of size k
2. $b \leftarrow$ true
3. for every $u, v \in S$
4. if $(u, v) \in E$ then $b \leftarrow$ false
5. if b return true
6. return false

Running time = $O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume k is a constant)
Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

```latex
\text{max-independent-set}(G = (V, E))
\
1. $R \leftarrow \emptyset$
2. for every set $S \subseteq V$
3. \hspace{1cm} $b \leftarrow \text{true}$
4. \hspace{1cm} for every $u, v \in S$
5. \hspace{2cm} if $(u, v) \in E$ then $b \leftarrow \text{false}$
6. \hspace{1cm} if $b$ and $|S| > |R|$ then $R \leftarrow S$
7. return $R$
```

Running time = $O(2^n n^2)$.
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: \(n! \)

Hamiltonian(G = (V, E))

1. for every permutation \((p_1, p_2, \cdots, p_n)\) of \(V\)
2. \(b \leftarrow \text{true} \)
3. for \(i \leftarrow 1\) to \(n - 1\)
 4. if \((p_i, p_{i+1}) \notin E\) then \(b \leftarrow \text{false} \)
5. if \((p_n, p_1) \notin E\) then \(b \leftarrow \text{false} \)
6. if \(b\) then return \((p_1, p_2, \cdots, p_n)\)
7. return “No Hamiltonian Cycle”

Running time = \(O(n! \times n)\)
 Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3. $k \leftarrow \lfloor (i + j)/2 \rfloor$
4. if $A[k] = t$ return true
5. if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false

Running time $= O(\log n)$
Comparing the Orders

- Sort the functions from smallest to largest asymptotically:
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)

- \(\log n = O(n) \)
- \(n = O(n^2) n = O(n \log n) \)
- \(n \log n = O(n^2) \)
- \(n^2 = O(n!) n^2 = O(2^n) \)
- \(2^n = O(n!) 2^n = O(e^n) \)
- \(e^n = O(n!) \)
- \(n! = O(n^n) \)
When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.