Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

2/75

CSE 431/531: Algorithm Analysis and Design

e Course Webpage (contains schedule, policies, and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

@ Please sign up course on Piazza via link on course webpage
- homeworks, solutions, announcements, polls, asking/answering
questions

http://www.cse.buffalo.edu/~shil/courses/CSE531/

@ Time & Location : TuTh, 5:00pm - 6:20pm, Cooke 121
@ Instructor:
e Shi Li, shil@buffalo.edu

@ TAs and Graders: TBD

4/75

You should already have/know:
@ Mathematical Background

e basic reasoning skills, inductive proofs
e Basic data Structures

e linked lists, arrays
e stacks, queues

@ Some Programming Experience
e Python, C, C4+—+ or Java

You Will Learn

o Classic algorithms for classic problems

e Sorting, shortest paths, minimum spanning tree, - - -

@ How to analyze algorithms
e Correctness
e Running time (efficiency)
@ Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming

@ NP-completeness

Tentative Schedule

@ 80 Minutes/Lecture x 29 Lectures

Introduction | 3 lectures

Graph Basics | 2 lectures

Greedy Algorithms | 5 lectures
Divide and Conquer | 4 lectures
Dynamic Programming | 5 lectures
Graph Algorithms | 5 lectures
NP-Completeness | 4 lectures
Final Review | 1 lectures

Textbook

Textbook (Highly Recommended):

e Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

JON KLEINBERG - EVA TARDOS

Other Reference Books

@ Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein

Reading Before Classes

@ Highly recommended: read the correspondent sections from the
textbook (or reference book) before classes

e Sections for each lecture can be found on the course webpage.

@ Slides are posted on course webpage. They may get updated
before the classes start.

@ In last lecture of a major topic (Greedy Algorithms, Divide and
Conquer, Dynamic Programming, Graph Algorithms), | will discuss
exercise problems, which will be posted on the course webpage
before class.

@ 10% for participation

o In-class quizzes will be given randomly.
@ 40% for theory homeworks

e 8 points x 5 theory homeworks
@ 20% for programming problems

e 10 points X 2 programming assignments

@ 30% for final exam

10/75

For Homeworks, You Are Allowed to

@ Use course materials (textbook, reference books, lecture notes,
etc)

@ Post questions on Piazza
@ Ask me or TAs for hints

@ Collaborate with classmates

e Think about each problem for enough time before discussions
e Must write down solutions on your own, in your own words
e Write down names of students you collaborated with

For Homeworks, You Are Not Allowed to

@ Use external resources

e Can't Google or ask questions online for solutions
e Can't read posted solutions from other algorithm course webpages

@ Copy solutions from other students

For Programming Problems

@ Need to implement the algorithms by yourself
@ Can not copy codes from others or the Internet

@ We use Moss (https://theory.stanford.edu/~aiken/moss/)
to detect similarity of programs

https://theory.stanford.edu/~aiken/moss/

Late Policy

@ You have 1 “late credit”, using it allows you to submit an
assignment solution / project for three days. It can not be split
across different assignments.

@ With no special reasons, no other late submissions will be accepted

@ Final Exam will be closed-book

Academic Integrity (Al) Policy for the Course

@ minor violation:
e 0 score for the involved homework/prog. assignment, and
o l-letter grade down
@ 2 minor violations = 1 major violation
e failure for the course
e case will be reported to the department and university

e further sanctions may include a dishonesty mark on transcript or
expulsion from university

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

16,75

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

17/75

What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.
e Computational problem: specifies the input/output relationship.

@ An algorithm solves a computational problem if it produces the
correct output for any given input.

Examples

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270
Output: 30

Algorithm: Euclidean algorithm
ged(270,210) = ged (210,270 mod 210) = ged(210, 60)
(270,210) — (210,60) — (60,30) — (30,0)

Input: sequence of n numbers (ay,as, -+, ay)

Output: a permutation (a},aj, - - ,al,) of the input sequence such

) 'n
that a} <ajy <.--<a),

@ Input: 53,12, 35,21,59, 15
e Output: 12,15, 21,35, 53,59

@ Algorithms: insertion sort, merge sort, quicksort, ...

20/75

Input: directed graph G = (V, E), s,t € V
Output: a shortest path from stotin G

R

@ Algorithm: Dijkstra’s algorithm

21/75

Algorithm = Computer Program?

@ Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

o Computer program: “concrete”, implementation of algorithm,
using a particular programming language

C++ program:
@ int Euclidean(int a, int b){

Pseudo-Code: ° int ¢;
° while (b > 0){
Euclidean(a, b) ° c=b;
1: while b > 0 do ° b=a%b;
2: (a,b) < (b,a mod b) o 3= c
3: return a o }
) return a;
°}

23/75

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side

extensibility

modularity

object-oriented model
user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)
© fundamental
Q it is fun!

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

25/75

Sorting Problem

Input: sequence of n numbers (a1, as,- - ,a,)

Output: a permutation (a},a), - ,al,) of the input sequence such

»'n

that ¢} <af <--- <da,

Example:
@ Input: 53,12, 35,21,59, 15
e Output: 12,15,21,35,53,59

@ At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53,12, 35,21,59, 15
iteration 2: 12,53, 35,21,59, 15
iteration 3: 12,35,53, 21,59, 15
iteration 4: 12,21, 35,53,59,15
iteration 5: 12,21, 35,53,59, 15
iteration 6: 12,15, 21,35,53,59

27/75

Example:
e Input: 53,12, 35,21,59, 15
e Output: 12,15, 21, 35,53, 59

insertion-sort(A, n)

1. for j < 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] + AJi]
141—1

Ali + 1] < key

N

No g s w

@ =6
@ key =15

12 15 21 35 53
/]\

?

59

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

29/75

@ Correctness

@ Running time

30/75

@ Invariant: after iteration j of outer loop, A[l..j] is the sorted array
for the original A[l..7].

after j = 1:53,12,35,21,59, 15
after j = 2: 12,53, 35, 21,59, 15
after j = 3: 12, 35,53, 21,59, 15
after j = 4: 12,21, 35,53,59, 15
after j = 5:12,21,35,53,59, 15
after j = 6: 12,15, 21, 35,53, 59

31/75

Analyzing Running Time of Insertion Sort

@ QI1: what is the size of input?
@ Al: Running time as the function of size

@ possible definition of size :

e Sorting problem: # integers,
o Greatest common divisor: total length of two integers
e Shortest path in a graph: # edges in graph

@ Q2: Which input?

e For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

@ A2: Worst-case analysis:

e Running time for size n = worst running time over all possible arrays
of length n

@ Q3: How fast is the computer?
@ Q4: Programming language?
@ A: They do not matter!

@ Focus on growth of running-time as a function, not any particular
value.

33/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

@ Ignoring lower order terms

Ignoring leading constant

3nd 4+ 2n? — 18n + 1028 = 3n® = n?
3n3 4+ 2n? — 18n + 1028 = O(n?)

n%/100 — 3n + 10 = n?/100 = n?
n?/100 — 3n + 10 = O(n?)

Asymptotic Analysis: O-notation

@ 3n®+2n? — 18n + 1028 = O(n?)

e n2/100 — 3n* + 10 = O(n?)

O-notation allows us to ignore

@ architecture of computer

@ programming language

@ how we measure the running time: seconds or # instructions?

@ to execute a + b+ c:

e program 1 requires 10 instructions, or 10~® seconds

e program 2 requires 2 instructions, or 10~ seconds

e they only change by a constant in the running time, which will be
hidden by the O(-) notation

Asymptotic Analysis: O-notation

@ Algorithm 1 runs in time O(n?)
@ Algorithm 2 runs in time O(n)

@ Does not tell which algorithm is faster for a specific n!

@ Algorithm 2 will eventually beat algorithm 1 as n increases.

@ For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

@ For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for j < 2ton do

key < Alj]

i -1

while i > 0 and A[i] > key do
Ali + 1] + Al1]
141—1

Ali + 1] « key

N

N o g s w

@ Worst-case running time for iteration j of the outer loop?
Answer: O(j)

o Total running time = > 7, O(j) = O(3_7_, 7)
= 0™t 1) = O(n?)

Computation Model

@ Random-Access Machine (RAM) model
o reading and writing A[j] takes O(1) time

@ Basic operations such as addition, subtraction and multiplication
take O(1) time

@ Each integer (word) has clogn bits, ¢ > 1 large enough

e Reason: often we need to read the integer n and handle integers
within range [—n® n¢], it is convenient to assume this takes O(1)
time.

@ What is the precision of real numbers?
Most of the time, we only consider integers.
@ Can we do better than insertion sort asymptotically?

@ Yes: merge sort, quicksort and heap sort take O(nlogn) time

@ Remember to sign up for Piazza.

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

40/75

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ny we have f(n) >0

In other words, f(n) is positive for large enough n.
n?—n—30 Yes
AR Yes

100n — n?/10 + 507 No

We only consider asymptotically positive functions.

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ >0
and every large enough n.

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,n9 > 0 such that

f(n) < cg(n),¥n > no}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ > 0
and every large enough n.

e 3n®+2n € O(n? — 10n)

Proof.

Let ¢ = 4 and ny = 50, for every n > ng = 50, we have,
3n? 4+ 2n — c(n? — 10n) = 3n? + 2n — 4(n? — 10n)
=-—n?+4+42n <0.
3n? 4+ 2n < ¢(n? — 10n) O

ST I":

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ and
large enough n.

3n? 4+ 2n € O(n* — 10n)

3n? +2n € O(n® — 5n?)

n'% e O(2")

n® ¢ O(10n?)

Asymptotic Notations | O | Q | ©
Comparison Relations | <

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n?+2n = 0(n®— 10n)

@ 3n?+2n = O(n*+ 5n)

@ 3n% +2n = 0(n?)

“="is asymmetric! Following equalities are wrong:

e O(n®—10n) = 3n?+2n

e O(n*+5n)=3n*+2n

e O(n?) =3n?+2n

@ Analogy: Mike is a student. A-studentisMike:

45/75

(2-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) > cg(n),¥n > ne}.

@ In other words, f(n) € Q(g(n)) if f(n) > cg(n) for some ¢ and
large enough n.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,n9 > 0 such that

f(n) > cg(n),¥n > no}.

47/75

@ Again, we use “=" instead of €.
o 4n? = Q(n — 10)
e 3n? —n+10 = Q(n? — 20)
Asymptotic Notations | O | Q | ©
Comparison Relations | < | > |

Theorem f(n) = O(g(n)) < g(n) = Q(f(n)).

~—
~—

48/75

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: ez > ¢; > 0,ng > 0 such that

c1g(n) < f(n) < cag(n),¥n > ng}.

@ f(n) =0©(g(n)), then for large enough n, we have “f(n) ~ g(n)".

I
no

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
O(g(n)) = {function f : ez > ¢ > 0,ng > 0 such that

aig(n) < f(n) < cag(n).¥n > o}

@ 3n?+2n = O(n? — 20n)
° 2n/3+100 — @(271/3)

@

Asymptotic Notations \ @) \ Q
<|>

Comparison Relations ‘

Theorem f(n) = 0O(g(n)) if and only if
f(n) = 0O(g(n)) and f(n) = Q(g(n)).

Asymptotic Notations \ O \ Q \ ©
Comparison Relations ‘ < ‘ > ‘ =

Trivial Facts on Comparison Relations
ea<b & b>a

@ea=b < a<banda>b
ea<bora>b

Correct Analogies
o f(n)=0(g(n)) & g(n)
o f(n) =0(g(n) & f(n)

Q(f(n))
O(g(n)) and f(n) = Q(g(n))

Incorrect Analogy
o f(n)=0(g(n)) or f(n) =Qg(n))

o f(n)=0(g(n)) or f(n) =Q(g(n))
f(n) =n’
o= {ly e

52/75

Recall: Informal way to define O-notation

ignoring lower order terms: 3n? — 10n — 5 — 3n?

ignoring leading constant: 3n? — n?

3n? —10n — 5 = O(n?)

Indeed, 3n? — 10n — 5 = Q(n?),3n? — 10n — 5 = O(n?)

In the formal definition of O(-), nothing tells us to ignore lower
order terms and leading constant.

3n? —10n — 5 = O(5n* — 6n + 5) is correct, though weird

3n? — 10n — 5 = O(n?) is the most natural since n? is the
simplest term we can have inside O(-).

Notice that O denotes asymptotic upper bound

e n? +2n = O(n?) is correct.

@ The following sentence is correct: the running time of the
insertion sort algorithm is O(n?).

@ We say: the running time of the insertion sort algorithm is O(n?)
and the bound is tight.

@ We do not use €2 and © very often when we upper bound running
times.

Exercise
For each pair of functions f, g in the following table, indicate whether
fis O, Qor © of g.
f g O] Q| 6
n® —100n 5n?+3n | No | Yes | No
3n — 50 n?—Tn | Yes | No | No
n? —100n 5n% 4 30n | Yes | Yes | Yes

log, n log;om | Yes | Yes | Yes
log™n no! Yes | No | No
2" on/2 No | Yes | No
Vn psmn No | No | No

We often use log n for log, n. But for O(logn), the base is not
important.

Asymptotic Notations | O |
<]

Q
Comparison Relations | >

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

57/75

Computing the sum of n numbers

sum(A, n)
1. S0
2: fori< 1ton
3: S+ S+ Al
4: return S

58/75

@ Merge two sorted arrays

3812203248

59/75

O(n) (Linear) Running Time

merge(B, C,ny, ny) \\ B and C are sorted, with
length n; and ns

LA+[;i+1,5+1
2: while i < n; and j < ny, do
3 if B[i] < C[j] then
4 append Bli] to A; i< 1+ 1
5: else
6 append Cljlto A; j+ j+1
7: if i < ny then append Bli..ny] to A
8: if j < my then append C[j..ns] to A
9: return A

Running time = O(n) where n = ny + no.

merge-sort(A, n)
1. if n =1 then
: return A
3: B+ merge-sort(A[l..Ln/ZJ], Ln/2j)
4: C + merge—sort(A[[n/2J +1.n],n— Ln/QJ)
5. return merge(B,C, [n/2|,n — |n/2])

61,75

O(nlogn) Running Time

@ Merge-Sort

iy

A[l 2]‘ AJ3. 4 %[7 8|

ﬁﬁ

@ Each level takes running time O(n

@ There are O(logn) levels

@ Running time = O(nlogn)

Input: n points in plane: (z1,y1), (72,92), - , (T, y0)
Output: the pair of points that are closest

63,75

O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,y1), (¥2,92),** , (¥n, Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

1: bestd + oo

2. fori<1ton—1do

3: for j <~ i+ 1tondo

4 d + /(@[i] — 2[5])? + (y[i] - yls])
5: if d < bestd then
6
7:

besti < i, bestj < 7, bestd < d
return (besti, besty)

Closest pair can be solved in O(nlogn) time!

Multiply two matrices of size n x n

matrix-multiplication(A, B, n)
1: C' < matrix of size n x n, with all entries being 0
2: for i < 1tondo

3 for j < 1tondo

4: for k < 1tondo

5 Cli, k] < C[i, k] + Ali, j] x B[j, k]

6

- return C

65/75

Def. An independent set of a graph G = (V, E) is a subset S C V
of vertices such that for every u,v € S, we have (u,v) ¢ E.

66,75

Beyond Polynomial Time: 2"

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the maximum independent set of G

max-independent-set(G = (V, F))
1. R+ 0

2: for every set S C V do

3: b « true

4 for every u,v € S do

5: if (u,v) € E then b < false
6 if b and |S| > |R| then R < S
7

return R

Running time = O(2"n?).

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,
or say no such cycle exists

68/75

Beyond Polynomial Time: n!

Hamiltonian(G = (V, E))

1. for every permutation (p1,ps, -+ ,p,) of V do
2 b < true

3 fori< 1ton—1do

4: if (ps,pir1) ¢ E then b« false

5 if (pn,p1) ¢ E then b < false

6 if b then return (p1,p2, -+ ,Pn)

T

return “No Hamiltonian Cycle”

Running time = O(n! x n)

O(logn) (Logarithmic) Running Time

@ Binary search

e Input: sorted array A of size n, an integer t;

e Output: whether t appears in A.

e E.g, search 35 in the following array:

25

29

37

38

42

46

92

99

61

63

75

79

O(logn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Li+1,7n

2: while 7 < j do

3 ke [(i+5)/2)

4: if A[k] =t return true

5 if t < Alk] then j <k —1lelse i<+ k+1
6: return false

Running time = O(logn)

@ Sort the functions from smallest to largest asymptotically

logn, n, n? nlogn, n!, 2% e" n"

e logn =0O(n)

e n=0(nlogn)
e nlogn = O(n?)
e n?=0(2")

@ 2" =0(e")

e " =0(n!)

e n!l=0(n")

72/75

Terminologies

When we talk about upper bound on running time:
@ Logarithmic time: O(logn)

@ Linear time: O(n)

@ Quadratic time O(n?)

e Cubic time O(n?)

@ Polynomial time: O(n*) for some constant k

o O(nlogn) C O(n''). So, an O(nlogn)-time algorithm is also a
polynomial time algorithm.

e Exponential time: O(c¢") for some ¢ > 1
@ Sub-linear time: o(n)

@ Sub-quadratic time: o(n?)

Goal of Algorithm Design

@ Design algorithms to minimize the order of the running time.

@ Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

@ Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time 0.1n?
with an algorithm with running time 1000n7

A:

@ Sometimes yes

@ However, when n is big enough, 1000n < 0.1n?

@ For “natural” algorithms, constants are not so big!

@ So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

	Syllabus
	Introduction
	What is an Algorithm?
	Example: Insertion Sort
	Analysis of Insertion Sort

	Asymptotic Notations
	Common Running times

