CSE 431/531: Algorithm Analysis and Design (Spring 2021)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
CSE 431/531: Algorithm Analysis and Design

- **Time**
 - MoWeFr, 9:10am-10:00am

- **All lectures are virtual**

- **Instructor:**
 - Shi Li, shil@buffalo.edu

- **TAs:**
 - Xiangyu Guo
 - Alesandro Baccarini
You should already have/know:

- Mathematical Background
 - basic reasoning skills, inductive proofs
- Basic data Structures
 - linked lists, arrays
 - stacks, queues
- Some Programming Experience
 - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - · · ·
- NP-completeness
Tentative Schedule (42 Lectures)

See the course webpage.
Textbook (Highly Recommended):

- **Algorithm Design**, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

Reading Before Classes

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
 - Sections for each lecture can be found on the course webpage.
- Slides and example problems for recitations will be posted on the course webpage before class
Grading

- 40% for theory homeworks
 - 8 points × 5 theory homeworks
- 20% for programming problems
 - 10 points × 2 programming problems
- 40% for final exam
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss
 (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted
Final Exam will be closed-book

Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:

- “F” for the course
- lose financial support as TA/RA
- case will be reported to the department and university

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm **solves** a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- **Input:** 210, 270
- **Output:** 30

- Algorithm: Euclidean algorithm
 - $\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$
 - $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$
Examples

Sorting

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, \ldots
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, using a particular programming language
Euclidean\((a, b)\)

1: \textbf{while} \(b > 0\) \textbf{do}
2: \((a, b) \leftarrow (b, a \mod b)\)
3: \textbf{return} \(a\)

C++ program:

```
int Euclidean(int a, int b){
    int c;
    while (b > 0){
        c = b;
        b = a \% b;
        a = c;
    }
    return a;
}
```
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...
- Why is it important to study the running time (efficiency) of an algorithm?
 1. feasible vs. infeasible
 2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
 3. fundamental
 4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
Insertion-Sort

- At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: $key \leftarrow A[j]$
3: $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: $A[i + 1] \leftarrow A[i]$
6: $i \leftarrow i - 1$
7: $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 15 21 35 53 59

↑

i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Correctness of Insertion Sort

 - after $j = 1$: 53, 12, 35, 21, 59, 15
 - after $j = 2$: 12, 53, 35, 21, 59, 15
 - after $j = 3$: 12, 35, 53, 21, 59, 15
 - after $j = 4$: 12, 21, 35, 53, 59, 15
 - after $j = 5$: 12, 21, 35, 53, 59, 15
 - after $j = 6$: 12, 15, 21, 35, 53, 59
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
A1: Running time as the function of size
possible definition of size:
 - Sorting problem: \# integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: \# edges in graph

Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
A2: Worst-case analysis:
 - Running time for size $n =$ worst running time over all possible arrays of length n
Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!

Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 - 3n + 10 = O(n^2)$
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

To execute $a \leftarrow b + c$:
- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds

They only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation.
Algorithm 1 runs in time $O(n^2)$
Algorithm 2 runs in time $O(n)$

Does not tell which algorithm is faster for a specific n!
Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: **for** $j \leftarrow 2$ to n **do**
2: \hspace{10pt} key $\leftarrow A[j]$
3: \hspace{10pt} $i \leftarrow j - 1$
4: \hspace{10pt} **while** $i > 0$ and $A[i] > key$ **do**
5: \hspace{20pt} $A[i + 1] \leftarrow A[i]$
6: \hspace{20pt} $i \leftarrow i - 1$
7: \hspace{20pt} $A[i + 1] \leftarrow key$

- Worst-case running time for iteration j of the outer loop?

 Answer: $O(j)$

- Total running time = $\sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j)$

 $= O\left(\frac{n(n+1)}{2} - 1\right) = O(n^2)$
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing \(A[j] \) takes \(O(1) \) time
- Basic operations such as addition, subtraction and multiplication take \(O(1) \) time
- Each integer (word) has \(c \log n \) bits, \(c \geq 1 \) large enough
 - Reason: often we need to read the integer \(n \) and handle integers within range \([-n^c, n^c]\), it is convenient to assume this takes \(O(1) \) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
 Yes: merge sort, quicksort and heap sort take \(O(n \log n) \) time
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- \(n^2 - n - 30 \) \hspace{1cm} Yes

- \(2^n - n^{20} \) \hspace{1cm} Yes

- \(100n - n^2/10 + 50 \) \hspace{1cm} No

- We only consider asymptotically positive functions.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

![Graph showing the relationship between $f(n)$ and $cg(n)$](image)
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let $c = 4$ and $n_0 = 50$, for every $n > n_0 = 50$, we have,

\[
3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)
\]
\[
= -n^2 + 40n \leq 0.
\]
\[
3n^2 + 2n \leq c(n^2 - 10n)
\]
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)

\[
3n^2 + 2n = O(n^3 - 10n)
\]

\[
3n^2 + 2n = O(n^2 + 5n)
\]

\[
3n^2 + 2n = O(n^2)
\]

“=” is asymmetric! Following equalities are wrong:

\[
O(n^3 - 10n) = 3n^2 + 2n
\]

\[
O(n^2 + 5n) = 3n^2 + 2n
\]

\[
O(n^2) = 3n^2 + 2n
\]

Analogy: Mike is a student. A student is Mike.
\(\Omega\)-Notation: Asymptotic Lower Bound

\(O\)-Notation For a function \(g(n) \),
\[
O(g(n)) = \left\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \right\}.
\]

\(\Omega\)-Notation For a function \(g(n) \),
\[
\Omega(g(n)) = \left\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \right\}.
\]

- In other words, \(f(n) \in \Omega(g(n)) \) if \(f(n) \geq cg(n) \) for some \(c \) and large enough \(n \).
Ω-Notation: Asymptotic Lower Bound

For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
Ω-Notation: Asymptotic Lower Bound

- Again, we use “=” instead of \in.
 - $4n^2 = \Omega(n - 10)$
 - $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>

Theorem
$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0\}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.

![Diagram showing the relationship between $f(n)$ and $g(n)$ for large n.](image)
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function \(g(n) \),
\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n = \Theta(n^2 - 20n) \)
- \(2^{n/3+100} = \Theta(2^{n/3}) \)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

Theorem \(f(n) = \Theta(g(n)) \) if and only if
\[
f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).
\]
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy

- $f(n) = O(g(n))$ or $f(n) = \Omega(g(n))$
Incorrect Analogy

\[f(n) = \Theta(g(n)) \text{ or } f(n) = \Omega(f(n)) \]

\[f(n) = n^2 \]

\[g(n) = \begin{cases}
1 & \text{if } n \text{ is odd} \\
n^3 & \text{if } n \text{ is even}
\end{cases} \]
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.
Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.
Exercise

For each pair of functions \(f, g \) in the following table, indicate whether \(f \) is \(O, \Omega \) or \(\Theta \) of \(g \).

<table>
<thead>
<tr>
<th>(f)</th>
<th>(g)</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^3 - 100n)</td>
<td>(5n^2 + 3n)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(3n - 50)</td>
<td>(n^2 - 7n)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(n^2 - 100n)</td>
<td>(5n^2 + 30n)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\log_2 n)</td>
<td>(\log_{10} n)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\log^{10} n)</td>
<td>(n^{0.1})</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(2^{n/2})</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\sqrt{n})</td>
<td>(n^{\sin n})</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

We often use \(\log n \) for \(\log_2 n \). But for \(O(\log n) \), the base is not important.
Asymptotic Notations

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

\begin{algorithm}
\textbf{sum}(A, n)
\begin{algorithmic}[1]
\STATE $S \leftarrow 0$
\FOR{$i \leftarrow 1$ \TO n}
\STATE $S \leftarrow S + A[i]$
\ENDFOR
\RETURN S
\end{algorithmic}
\end{algorithm}
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29 32 48
```
$O(n)$ (Linear) Running Time

merge(B, C, n_1, n_2)
\(B\) and \(C\) are sorted, with length \(n_1\) and \(n_2\)

1: \(A \leftarrow []; i \leftarrow 1; j \leftarrow 1\)
2: \textbf{while} \(i \leq n_1\) and \(j \leq n_2\) \textbf{do}
3: \hspace{1em} \textbf{if} \(B[i] \leq C[j]\) \textbf{then}
4: \hspace{2em} \text{append} \(B[i]\) \text{ to} \(A\); \(i \leftarrow i + 1\)
5: \hspace{1em} \textbf{else}
6: \hspace{2em} \text{append} \(C[j]\) \text{ to} \(A\); \(j \leftarrow j + 1\)
7: \hspace{1em} \textbf{if} \(i \leq n_1\) \textbf{then append} \(B[i..n_1]\) \text{ to} \(A\)
8: \hspace{1em} \textbf{if} \(j \leq n_2\) \textbf{then append} \(C[j..n_2]\) \text{ to} \(A\)
9: \textbf{return} \(A\)

Running time = $O(n)$ where $n = n_1 + n_2$.
O(n log n) Running Time

\[
\text{merge-sort}(A, n)
\]

1. \textbf{if} \ n = 1 \ \textbf{then}
2. \textbf{return} \ A
3. \textbf{else}
4. \hspace{1em} B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)
5. \hspace{1em} C \leftarrow \text{merge-sort}\left(A[\lfloor n/2\rfloor + 1..n], n - \lfloor n/2\rfloor\right)
6. \textbf{return} \ \text{merge}(B, C, \lfloor n/2\rfloor, n - \lfloor n/2\rfloor)
$O(n \log n)$ Running Time

- **Merge-Sort**

 ![Diagram of Merge-Sort](image)

 Each level takes running time $O(n)$
 There are $O(\log n)$ levels
 Running time $= O(n \log n)$
$O(n^2)$ (Quadratic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

closest-pair(x, y, n)

1: $bestd \leftarrow \infty$
2: **for** $i \leftarrow 1$ **to** $n - 1$ **do**
3: **for** $j \leftarrow i + 1$ **to** n **do**
4: \[d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2} \]
5: **if** $d < bestd$ **then**
6: \[besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d \]
7: **return** $(besti, bestj)$

Closest pair can be solved in $O(n \log n)$ time!
$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

```
matrix-multiplication(A, B, n)

1:  C ← matrix of size $n \times n$, with all entries being 0
2:  for $i \leftarrow 1$ to $n$ do
3:      for $j \leftarrow 1$ to $n$ do
4:          for $k \leftarrow 1$ to $n$ do
5:              $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6:  return $C$
```
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k
$O(n^k)$ Running Time for Integer $k \geq 4$

Independent Set of Size k

- **Input:** graph $G = (V, E)$
- **Output:** whether there is an independent set of size k

Algorithm:

```
1: for every set $S \subseteq V$ of size $k$ do
2:   $b \leftarrow$ true
3:   for every $u, v \in S$ do
4:     if $(u, v) \in E$ then $b \leftarrow$ false
5:   if $b$ return true
6: return false
```

Running time $= O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)
Maximum Independent Set Problem

Input: graph $G = (V, E)$
Output: the maximum independent set of G

max-independent-set($G = (V, E)$)

1: $R \leftarrow \emptyset$
2: for every set $S \subseteq V$ do
3: \quad $b \leftarrow$ true
4: \quad for every $u, v \in S$ do
5: \quad \quad if $(u, v) \in E$ then $b \leftarrow$ false
6: \quad if b and $|S| > |R|$ then $R \leftarrow S$
7: return R

Running time $= O(2^n n^2)$.
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian($G = (V, E)$)

1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: \hspace{1em} $b \leftarrow \text{true}$
3: \hspace{1em} for $i \leftarrow 1$ to $n - 1$ do
4: \hspace{2em} if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow \text{false}$
5: \hspace{1em} if $(p_n, p_1) \notin E$ then $b \leftarrow \text{false}$
6: \hspace{1em} if b then return (p_1, p_2, \cdots, p_n)
7: return “No Hamiltonian Cycle”

Running time = $O(n! \times n)$
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>10</th>
<th>25</th>
<th>29</th>
<th>37</th>
<th>38</th>
<th>42</th>
<th>46</th>
<th>52</th>
<th>59</th>
<th>61</th>
<th>63</th>
<th>75</th>
<th>79</th>
</tr>
</thead>
</table>

Binary search

- **Input**: sorted array A of size n, an integer t;
- **Output**: whether t appears in A.

```
binary-search(A, n, t)
1:    i ← 1, j ← n
2:    while $i \leq j$ do
3:        $k \leftarrow \lfloor (i + j)/2 \rfloor$
4:        if $A[k] = t$ return true
5:        if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6:    return false
```

Running time = $O(\log n)$
Comparing the Orders

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)
- \(\log n = O(n) \)
- \(n = O(n^2)n = O(n \log n) \)
- \(n \log n = O(n^2) \)
- \(n^2 = O(n!)n^2 = O(2^n) \)
- \(2^n = O(n!)2^n = O(e^n) \)
- \(e^n = O(n!) \)
- \(n! = O(n^n) \)
Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.