CSE 431/531: Algorithm Analysis and Design (Fall 2021)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
CSE 431/531: Algorithm Analysis and Design

- Time & Location: 5:30pm-6:45pm, Davis 101
- Hybrid mode
 - Session 1: In person on Tuesdays, Remote on Thursdays
 - Session 2: Remote on Tuesdays, In person on Thursdays
- Instructor:
 - Shi Li, shil@buffalo.edu
- TAs:
 - Xiaoyu Zhang, Charles Wiechec, Yunus Esencayi
COVID-Related Information

- Get vaccinated
- Wear a mask

What do I do if I don’t feel well?

- Your safety and the safety of your class-mates comes first
- Follow UB procedure
- Do not come to class—just send me an email, and we can meet on Zoom temporarily while you sort things out—even if is false alarm!
- Your privacy will be protected to the extent that is reasonably possible
You should already have/know:
You should already have/know:

- **Mathematical Background**
- basic reasoning skills, inductive proofs
You should already have/know:

- **Mathematical Background**
 - basic reasoning skills, inductive proofs

- **Basic data Structures**
 - linked lists, arrays
 - stacks, queues
You should already have/know:

- **Mathematical Background**
 - basic reasoning skills, inductive proofs

- **Basic data Structures**
 - linked lists, arrays
 - stacks, queues

- **Some Programming Experience**
 - Python, C, C++ or Java
You Will Learn

- Classic algorithms for classic problems
- Sorting, shortest paths, minimum spanning tree, · · ·
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·

- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·

- How to analyze algorithms
 - Correctness
 - Running time (efficiency)

- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - · · ·

NP-completeness
You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, ...
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - ...
- NP-completeness
Tentative Schedule

- **75 Minutes/Lecture × 29 Lectures**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Graph Basics</td>
<td>2</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>5</td>
</tr>
<tr>
<td>Divide and Conquer</td>
<td>5</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>5</td>
</tr>
<tr>
<td>Graph Algorithms</td>
<td>5</td>
</tr>
<tr>
<td>NP-Completeness</td>
<td>3</td>
</tr>
<tr>
<td>Final Review</td>
<td>1</td>
</tr>
</tbody>
</table>
Textbook

Textbook (Highly Recommended):
- Algorithm Design, 1st Edition, by
 Jon Kleinberg and Eva Tardos

Other Reference Books
Reading Before Classes

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes.
- Sections for each lecture can be found on the course webpage.

- Slides are posted on course webpage. They may get updated before the classes start.

- In last lecture of a major topic (Greedy Algorithms, Divide and Conquer, Dynamic Programming, Graph Algorithms), I will discuss exercise problems, which will be posted on the course webpage before class.
40% for theory homeworks
 8 points \times 5 theory homeworks
20% for programming problems
 10 points \times 2 programming assignments
40% for final exam
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - **Must write down solutions on your own, in your own words**
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to submit an assignment solution for three days.
- With no special reasons, no other late submissions will be accepted.
Final Exam will be closed-book

Academic Integrity (AI) Policy for the Course

- minor violation:
 - 0 score for the involved homework/prog. assignment, and
 - 1-letter grade down
- 2 minor violations = 1 major violation
 - failure for the course
 - case will be reported to the department and university
 - further sanctions may include a dishonesty mark on transcript or expulsion from university
Final Exam will be closed-book

Academic Integrity (AI) Policy for the Course

- minor violation:
 - 0 score for the involved homework/prog. assignment, and
 - 1-letter grade down
- 2 minor violations = 1 major violation
 - failure for the course
 - case will be reported to the department and university
 - further sanctions may include a dishonesty mark on transcript or expulsion from university

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- Input: 210, 270
- Output: 30

Algorithm: Euclidean algorithm

```
gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)
```

```
(270, 210) → (210, 60) → (60, 30) → (30, 0)
```
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- Input: 210, 270
- Output: 30

Algorithm: Euclidean algorithm
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

- **Input:** 210, 270
- **Output:** 30

Algorithm: Euclidean algorithm

- $\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0 \)

Output: the greatest common divisor of \(a \) and \(b \)

Example:

- **Input:** 210, 270
- **Output:** 30

Algorithm: Euclidean algorithm

\[
gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)
\]

\[
(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)
\]
Sorting

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, \ldots
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

![Graph Diagram]

Algorithm: Dijkstra's algorithm
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

![Diagram of a directed graph with nodes and edges labeled with weights.]

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, using a particular programming language
Pseudo-Code

Euclidean \((a, b)\)

1. while \(b > 0\) do
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b){
    int c;
    while (b > 0){
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Main focus: correctness, running time (efficiency)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

Why is it important to study the running time (efficiency) of an algorithm?

1. **feasible vs. infeasible**
2. **efficient algorithms**: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. **fundamental**
4. It is fun!
Theoretical Analysis of Algorithms

- **Main focus:** correctness, running time (efficiency)
- **Sometimes:** memory usage
- **Not covered in the course:** engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for \(j \leftarrow 2 \) to \(n \) do
2: \(\text{key} \leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: while \(i > 0 \) and \(A[i] > \text{key} \) do
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow \text{key} \)
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: **for** j ← 2 to n **do**
2: key ← A[j]
3: i ← j − 1
4: **while** i > 0 and A[i] > key **do**
6: i ← i − 1
7: A[i + 1] ← key

- j = 6
- key = 15

12 21 35 53 59 15
↑
i
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: $key \leftarrow A[j]$
3: $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: $A[i + 1] \leftarrow A[i]$
6: $i \leftarrow i - 1$
7: $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(\(A, n\))

1: for \(j \leftarrow 2\) to \(n\) do
2: \(key \leftarrow A[j]\)
3: \(i \leftarrow j - 1\)
4: while \(i > 0\) and \(A[i] > key\) do
5: \(A[i + 1] \leftarrow A[i]\)
6: \(i \leftarrow i - 1\)
7: \(A[i + 1] \leftarrow key\)

- \(j = 6\)
- \(key = 15\)

12 21 35 53 59 59
↑
i
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: \hspace{1em} key $\leftarrow A[j]$
3: \hspace{1em} $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: \hspace{2em} $A[i + 1] \leftarrow A[i]$
6: \hspace{2em} $i \leftarrow i - 1$
7: \hspace{1em} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 53 53 59

↑

i
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for j ← 2 to n do
2: key ← A[j]
3: i ← j − 1
4: while i > 0 and A[i] > key do
6: i ← i − 1
7: A[i + 1] ← key

- j = 6
- key = 15

12 21 35 53 53 59
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1. **for** \(j \leftarrow 2\) to \(n\) **do**
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. **while** \(i > 0\) and \(A[i] > key\) **do**
5. \(A[i + 1] \leftarrow A[i]\)
6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)

- \(j = 6\)
- \(key = 15\)

12, 21, 35, 35, 53, 59

↑

\(i\)
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1: for \(j \leftarrow 2 \) to \(n \) do
2: \(key \leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: while \(i > 0 \) and \(A[i] > key \) do
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow key \)

- \(j = 6 \)
- \(key = 15 \)

12 21 35 35 53 59
\[i \]

\[i \]
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort\((A, n) \)

1: for \(j \leftarrow 2 \text{ to } n \) do
2: \(\text{key} \leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: while \(i > 0 \text{ and } A[i] > \text{key} \) do
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow \text{key} \)
Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort*(A, n)***

1: **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2: \(key \leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: **while** \(i > 0 \) **and** \(A[i] > key \) **do**
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow key \)

- \(j = 6 \)
- \(key = 15 \)

12 21 21 35 53 59

↑

\(i \)
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1: for \(j \leftarrow 2\) to \(n\) do
2: \(\text{key} \leftarrow A[j]\)
3: \(i \leftarrow j - 1\)
4: while \(i > 0\) and \(A[i] > \text{key}\) do
5: \(A[i + 1] \leftarrow A[i]\)
6: \(i \leftarrow i - 1\)
7: \(A[i + 1] \leftarrow \text{key}\)

- \(j = 6\)
- \(\text{key} = 15\)

12 15 21 35 53 59

↑

\(i\)
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Correctness of Insertion Sort

Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

after $j = 1 : 53, 12, 35, 21, 59, 15$
after $j = 2 : 12, 53, 35, 21, 59, 15$
after $j = 3 : 12, 35, 53, 21, 59, 15$
after $j = 4 : 12, 21, 35, 53, 59, 15$
after $j = 5 : 12, 21, 35, 53, 59, 15$
after $j = 6 : 12, 15, 21, 35, 53, 59$
Q1: what is the size of input?
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
A1: Running time as the function of size
Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size:
 - Sorting problem: \# integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: \# edges in graph
Analyzing Running Time of Insertion Sort

Q1: what is the size of input?
A1: Running time as the function of size
possible definition of size:
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph

Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size:
 - Sorting problem: \# integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: \# edges in graph

- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - Running time for size $n =$ worst running time over all possible arrays of length n
Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?

Important idea: asymptotic analysis. Focus on growth of running time as a function, not any particular value.
Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!
Q3: How fast is the computer?
Q4: Programming language?
A: They do not matter!

Important idea: asymptotic analysis
- Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: \(\mathcal{O} \)-notation

Informal way to define \(\mathcal{O} \)-notation:

- Ignoring lower order terms
- Ignoring leading constant
Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$
Informal way to define O-notation:
- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 − 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 − 18n + 1028 = O(n^3)$
Asymptotic Analysis: O-notation

Informal way to define O-notation:
- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$

$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
Asymptotic Analysis: \(O \)-notation

Informal way to define \(O \)-notation:

- Ignoring lower order terms
- Ignoring leading constant

\[
3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3
\]

\[
3n^3 + 2n^2 - 18n + 1028 = O(n^3)
\]

\[
n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2
\]

\[
n^2/100 - 3n + 10 = O(n^2)
\]
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$
Asymptotic Analysis: \(O \)-notation

- \(3n^3 + 2n^2 - 18n + 1028 = O(n^3) \)
- \(n^2/100 - 3n^2 + 10 = O(n^2) \)

\(O \)-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

To execute $a \leftarrow b + c$:

- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds
Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $n^2/100 - 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

to execute $a \leftarrow b + c$:
- program 1 requires 10 instructions, or 10^{-8} seconds
- program 2 requires 2 instructions, or 10^{-9} seconds
- they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$
Algorithm 1 runs in time \(O(n^2) \)
Algorithm 2 runs in time \(O(n) \)
Does not tell which algorithm is faster for a specific \(n \)!
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.
Algorithm 1 runs in time $O(n^2)$
Algorithm 2 runs in time $O(n)$

Does not tell which algorithm is faster for a specific n!
Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
Asymptotic Analysis: O-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.
- For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2
Asymptotic Analysis of Insertion Sort

Algorithm: insertion-sort(A, n)

1. **for** $j \leftarrow 2$ to n **do**
2. $\text{key} \leftarrow A[j]$
3. $i \leftarrow j - 1$
4. **while** $i > 0$ and $A[i] > \text{key}$ **do**
5. $A[i + 1] \leftarrow A[i]$
6. $i \leftarrow i - 1$
7. $A[i + 1] \leftarrow \text{key}$

Worst-case running time for iteration j of the outer loop?

Answer: $O(j)$

Total running time = $\sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j) = O(\frac{n(n+1)}{2} - 1) = O(n^2)$
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: \textbf{for} $j \leftarrow 2$ \textbf{to} n \textbf{do}
2: \hspace{1em} $key \leftarrow A[j]$
3: \hspace{1em} $i \leftarrow j - 1$
4: \hspace{1em} \textbf{while} $i > 0$ \textbf{and} $A[i] > key$ \textbf{do}
5: \hspace{2em} $A[i + 1] \leftarrow A[i]$
6: \hspace{2em} $i \leftarrow i - 1$
7: \hspace{1em} $A[i + 1] \leftarrow key$

- Worst-case running time for iteration j of the outer loop?
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1: for $j \leftarrow 2$ to n do
2: \hspace{1em} $key \leftarrow A[j]$
3: \hspace{1em} $i \leftarrow j - 1$
4: while $i > 0$ and $A[i] > key$ do
5: \hspace{2em} $A[i + 1] \leftarrow A[i]$
6: \hspace{1em} $i \leftarrow i - 1$
7: \hspace{1em} $A[i + 1] \leftarrow key$

- Worst-case running time for iteration j of the outer loop?
 Answer: $O(j)$
Asymptotic Analysis of Insertion Sort

insertion-sort\((A, n)\)

1. **for** \(j \leftarrow 2\) to \(n\) **do**
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. **while** \(i > 0\) and \(A[i] > key\) **do**
5. \(A[i + 1] \leftarrow A[i]\)
6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)

- **Worst-case running time for iteration** \(j\) **of the outer loop?**
 - **Answer:** \(O(j)\)

- **Total running time**
 \[
 \sum_{j=2}^{n} O(j) = O\left(\sum_{j=2}^{n} j\right)
 = O\left(\frac{n(n+1)}{2} - 1\right) = O(n^2)
 \]
Computation Model

Random-Access Machine (RAM) model

- Reading and writing \(A[j] \) takes \(O(1) \) time.

- Basic operations such as addition, subtraction, and multiplication take \(O(1) \) time.

- Each integer (word) has \(c \log n \) bits, \(c \geq 1 \) large enough.

 - Reason: often we need to read the integer \(n \) and handle integers within range \([-n^c, n^c]\), it is convenient to assume this takes \(O(1) \) time.

What is the precision of real numbers?

- Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

- Yes: merge sort, quicksort, and heap sort take \(O(n \log n) \) time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time

Basic operations such as addition, subtraction and multiplication take $O(1)$ time.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough.

Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
 - Most of the time, we only consider integers.
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?
 - Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes $O(1)$ time.

- What is the precision of real numbers?
 Most of the time, we only consider integers.

- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)
Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

We only consider asymptotically positive functions.
Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$
Asymptotically Positive Functions

\textbf{Def.} \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an \textit{asymptotically positive function} if:

\begin{itemize}
 \item \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)
\end{itemize}

\begin{itemize}
 \item In other words, \(f(n) \) is positive for large enough \(n \).
 \item \(n^2 - n - 30 \) \hspace{1cm} \text{Yes}
\end{itemize}
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \to \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \) \quad \text{Yes}
- \(2^n - n^{20} \)
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ \quad Yes

- $2^n - n^{20}$ \quad Yes
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ \hspace{1cm} Yes
- $2^n - n^{20}$ \hspace{1cm} Yes
- $100n - n^2/10 + 50$?
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30 \quad \text{Yes}$
- $2^n - n^{20} \quad \text{Yes}$
- $100n - n^2/10 + 50? \quad \text{No}$
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an **asymptotically positive function** if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ \quad Yes
- $2^n - n^{20}$ \quad Yes
- $100n - n^2/10 + 50?$ \quad No

- We only consider asymptotically positive functions.
O-Notation: Asymptotic Upper Bound

For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

[Graph showing the relationship between $f(n)$ and $cg(n)$]

O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c > 0$ and every large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let $c = 4$ and $n_0 = 50$, for every $n > n_0 = 50$, we have,

$$3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$$

$$= -n^2 + 40n \leq 0.$$

$$3n^2 + 2n \leq c(n^2 - 10n)$$
O-Notation For a function $g(n)$,

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 - 10n)$
O-Notation For a function $g(n)$,

$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq c g(n), \forall n \geq n_0 \}.$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

- $3n^2 + 2n \in O(n^3 - 5n^2)$
O-Notation For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
O-Notation For a function $g(n)$,

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
Conventions

- We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)
Conventions

We use “\(f(n) = O(g(n)) \)” to denote “\(f(n) \in O(g(n)) \)”

- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)

“=” is asymmetric! Following equalities are wrong:

- \(O(n^3 - 10n) = 3n^2 + 2n \)
- \(O(n^2 + 5n) = 3n^2 + 2n \)
- \(O(n^2) = 3n^2 + 2n \)
Conventions

- We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)

“=” is asymmetric! Following equalities are wrong:
- \(O(n^3 - 10n) = 3n^2 + 2n \)
- \(O(n^2 + 5n) = 3n^2 + 2n \)
- \(O(n^2) = 3n^2 + 2n \)

- Analogy: Mike is a student. A student is Mike.
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0\}.$$

- In other words, $f(n) \in \Omega(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.

Ω-Notation: Asymptotic Lower Bound

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
Again, we use “=” instead of \in.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$
Ω-Notation: Asymptotic Lower Bound

- Again, we use “=” instead of \(\in \).
- \(4n^2 = \Omega(n - 10) \)
- \(3n^2 - n + 10 = \Omega(n^2 - 20) \)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td></td>
</tr>
</tbody>
</table>
\(\Omega \)-Notation: Asymptotic Lower Bound

- Again, we use “\(= \)” instead of \(\in \).
- \(4n^2 = \Omega(n - 10) \)
- \(3n^2 - n + 10 = \Omega(n^2 - 20) \)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td></td>
</tr>
</tbody>
</table>

Theorem
\[f(n) = O(g(n)) \iff g(n) = \Omega(f(n)). \]
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,
\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]
\(\Theta \)-Notation: Asymptotic Tight Bound

\(\Theta \)-Notation
For a function \(g(n) \),

\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(f(n) = \Theta(g(n)) \), then for large enough \(n \), we have “\(f(n) \approx g(n) \)”.

\[f(n) = \Theta(g(n)) \]

\[n \]

\[n_0 \]

\[c_1 \]

\[g(n) \]

\[f(n) \]

\[c_2 \]

\[g(n) \]
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.

![Graph showing the relationship between $f(n)$, $c_1g(n)$, and $c_2g(n)$ for large n](image.png)
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that }$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \quad c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0\}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$
Θ(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
$$

- $3n^2 + 2n = Θ(n^2 - 20n)$
- $2^{n/3+100} = Θ(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>$Ω$</th>
<th>$Θ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>$≥$</td>
<td>$=$</td>
</tr>
</tbody>
</table>
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function \(g(n) \),

\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n = \Theta(n^2 - 20n) \)
- \(2^{n/3 + 100} = \Theta(2^{n/3}) \)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

Theorem \(f(n) = \Theta(g(n)) \) if and only if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>O</td>
<td>Ω</td>
<td>Θ</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations
- $a \leq b \iff b \geq a$
- $a = b \iff a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

Correct Analogies
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy
- $f(n) = O(g(n))$ or $f(n) = \Omega(g(n))$
Incorrect Analogy

\[f(n) = O(g(n)) \text{ or } f(n) = \Omega(f(n)) \]
Incorrect Analogy

- \(f(n) = O(g(n)) \) or \(f(n) = \Omega(f(n)) \)

\[
\begin{align*}
 f(n) &= n^2 \\
 g(n) &= \begin{cases}
 1 & \text{if } n \text{ is odd} \\
 n^3 & \text{if } n \text{ is even}
 \end{cases}
\end{align*}
\]
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \to 3n^2$
- ignoring leading constant: $3n^2 \to n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.
Notice that O denotes asymptotic **upper bound**

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and **the bound is tight**.
Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>O</td>
<td>Ω</td>
</tr>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>$\log_2 n$</td>
<td>$\log_{10} n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>
Asymptotic Notations

\[O \quad \Omega \quad \Theta \quad \Theta \quad o \quad \omega \]

Comparison Relations

\[\leq \quad \geq \quad = \quad < \quad > \]

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
\(O(n) \) (Linear) Running Time

Computing the sum of \(n \) numbers

\[
\text{sum}(A, n)
\]

1: \(S \leftarrow 0 \)
2: for \(i \leftarrow 1 \) to \(n \)
3: \(S \leftarrow S + A[i] \)
4: return \(S \)
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3  8  12  20  32  48
5  7  9  25  29
3
```
\(O(n) \) (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3
\end{array}
\]
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 \\
\end{array}
\]
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
3 5
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7
```
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 \\
\end{array}
\]
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8
\end{array}
\]
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29  32  48
```
merge(B, C, n_1, n_2) \ B and C are sorted, with length n_1 and n_2

1: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2: \textbf{while} $i \leq n_1$ and $j \leq n_2$ \textbf{do}
3: \hspace{1em} \textbf{if} $B[i] \leq C[j]$ \textbf{then}
4: \hspace{2em} append $B[i]$ to A; $i \leftarrow i + 1$
5: \hspace{1em} \textbf{else}
6: \hspace{2em} append $C[j]$ to A; $j \leftarrow j + 1$
7: \hspace{1em} \textbf{if} $i \leq n_1$ \textbf{then} append $B[i..n_1]$ to A
8: \hspace{1em} \textbf{if} $j \leq n_2$ \textbf{then} append $C[j..n_2]$ to A
9: \textbf{return} A

$O(n)$ (Linear) Running Time
O(n) (Linear) Running Time

merge\(^{(B, C, n_1, n_2)}\)
\(B\) and \(C\) are sorted, with length \(n_1\) and \(n_2\)

1: \(A \leftarrow []\); \(i \leftarrow 1\); \(j \leftarrow 1\)
2: **while** \(i \leq n_1\) and \(j \leq n_2\) **do**
3: \(\textbf{if } B[i] \leq C[j] \textbf{ then} \)
4: \(\text{append } B[i] \text{ to } A; \ i \leftarrow i + 1\)
5: \(\textbf{else} \)
6: \(\text{append } C[j] \text{ to } A; \ j \leftarrow j + 1\)
7: \(\text{if } i \leq n_1 \text{ then append } B[i..n_1] \text{ to } A\)
8: \(\text{if } j \leq n_2 \text{ then append } C[j..n_2] \text{ to } A\)
9: return \(A\)

Running time = \(O(n)\) where \(n = n_1 + n_2\).
$O(n \log n)$ Running Time

merge-sort(A, n)

1: if $n = 1$ then
2: return A
3: else
4: $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5: $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor$)
6: return merge($B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor$)
\(O(n \log n) \) Running Time

- **Merge-Sort**

```
A[1..8]
```

Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels

Running time = \(O(n \log n) \)
$O(n \log n)$ Running Time

- **Merge-Sort**

 Each level takes running time $O(n)$
$O(n \log n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$

There are $O(\log n)$ levels
$O(n \log n)$ Running Time

- **Merge-Sort**

 Each level takes running time $O(n)$
 > There are $O(\log n)$ levels
 > Running time $= O(n \log n)$
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest
$O(n^2)$ (Quadratic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

closest-pair(x, y, n)

1: $bestd \leftarrow \infty$
2: for $i \leftarrow 1$ to $n - 1$ do
3: for $j \leftarrow i + 1$ to n do
4: $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5: if $d < bestd$ then
6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$
7: return $(besti, bestj)$
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

```plaintext
closest-pair(x, y, n)
1: bestd ← ∞
2: for i ← 1 to n − 1 do
3:   for j ← i + 1 to n do
4:     d ← \( \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2} \)
5:     if d < bestd then
6:       besti ← i, bestj ← j, bestd ← d
7: return (besti, bestj)
```

Closest pair can be solved in \(O(n \log n) \) time!
Multiply two matrices of size $n \times n$

\[
\text{matrix-multiplication}(A, B, n)
\]

1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to n do
3. for $j \leftarrow 1$ to n do
4. for $k \leftarrow 1$ to n do
5. $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return C
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

$O(n^k)$ Running Time for Integer $k \geq 4$
\(O(n^k)\) Running Time for Integer \(k \geq 4\)

Def. An independent set of a graph \(G = (V, E)\) is a subset \(S \subseteq V\) of vertices such that for every \(u, v \in S\), we have \((u, v) \notin E\).
An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k
Running Time for Integer $k \geq 4$

Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

```plaintext
independent-set(G = (V, E))
1: for every set $S \subseteq V$ of size $k$ do
2: b ← true
3: for every $u, v \in S$ do
4: if $(u, v) \in E$ then $b \leftarrow$ false
5: if $b$ return true
6: return false
```

Running time = $O\left(\frac{n^k}{k!} \times k^2 \right) = O(n^k)$ (assume k is a constant)
Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

max-independent-set($G = (V, E)$)

1: $R \leftarrow \emptyset$
2: for every set $S \subseteq V$ do
3: \hspace{1em} $b \leftarrow true$
4: \hspace{1em} for every $u, v \in S$ do
5: \hspace{2em} if $(u, v) \in E$ then $b \leftarrow false$
6: \hspace{1em} if b and $|S| > |R|$ then $R \leftarrow S$
7: return R

Running time $= O(2^n n^2)$.
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian Cycle Problem

Input: a graph with n vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: \(n! \)

Hamiltonian\((G = (V, E))\)

1. **for** every permutation \((p_1, p_2, \cdots, p_n)\) of \(V\) **do**
2. \(b \leftarrow true\)
3. **for** \(i \leftarrow 1\) to \(n - 1\) **do**
4. \(\text{if } (p_i, p_{i+1}) \notin E\) then \(b \leftarrow false\)
5. \(\text{if } (p_n, p_1) \notin E\) then \(b \leftarrow false\)
6. \(\text{if } b\) then return \((p_1, p_2, \cdots, p_n)\)
7. return “No Hamiltonian Cycle”

Running time = \(O(n! \times n)\)
$O(\log n)$ (Logarithmic) Running Time

Input: sorted array A of size n, an integer t; Output: whether t appears in A.

E.g., search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

E.g., search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

| 3 | 8 | 10 | 25 | 29 | 37 | 38 | 42 | 46 | 52 | 59 | 61 | 63 | 75 | 79 |
$O(\log n)$ (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- **E.g., search 35 in the following array:**

```
3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
$O(\log n)$ (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- E.g., search 35 in the following array:

```
3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
```

42 > 35
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
  3  8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g., search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:
$O(\log n)$ (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:
O(log n) (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array \(A \) of size \(n \), an integer \(t \);
 - Output: whether \(t \) appears in \(A \).
- E.g, search 35 in the following array:
\(O(\log n)\) (Logarithmic) Running Time

- **Binary search**
 - Input: sorted array \(A\) of size \(n\), an integer \(t\);
 - Output: whether \(t\) appears in \(A\).
- E.g, search 35 in the following array:

```
3 8 10 25 29 37 38 42 46 52 59 61 63 75 79
```

- \(37 > 35\)
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

\[
\begin{array}{cccccccccccccccc}
3 & 8 & 10 & 25 & 29 & 37 & 38 & 42 & 46 & 52 & 59 & 61 & 63 & 75 & 79 \\
\end{array}
\]
$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

1: $i \leftarrow 1$, $j \leftarrow n$
2: while $i \leq j$ do
3: \hphantom{2:} $k \leftarrow \lfloor (i + j)/2 \rfloor$
4: \hphantom{2:} if $A[k] = t$ return true
5: \hphantom{2:} if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6: return false
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

algorithm

```plaintext
binary-search($A, n, t$)

1: $i \leftarrow 1$, $j \leftarrow n$
2: while $i \leq j$ do
3:     $k \leftarrow \lfloor (i + j)/2 \rfloor$
4:     if $A[k] = t$ return true
5:     if $t < A[k]$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6: return false
```

Running time $= O(\log n)$
Comparing the Orders

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n\)
- \(\log n = O(n)\)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically:
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)
- \(\log n = O(n) \)
- \(n = O(n^2) \)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)
- \(\log n = O(n) \)
- \(n = O(n \log n) \)
- \(n \log n = O(n^2) \)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically
 \[\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \]
- \(\log n = O(n) \)
- \(n = O(n \log n) \)
- \(n \log n = O(n^2) \)
- \(n^2 = O(n!) \)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)
- \(\log n = O(n) \)
- \(n = O(n \log n) \)
- \(n \log n = O(n^2) \)
- \(n^2 = O(2^n) \)
- \(2^n = O(n!) \)
Comparing the Orders

Sort the functions from smallest to largest asymptotically
\(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n \)

- \(\log n = O(n) \)
- \(n = O(n \log n) \)
- \(n \log n = O(n^2) \)
- \(n^2 = O(2^n) \)
- \(2^n = O(e^n) \)
- \(e^n = O(n!) \)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically:
 \(\log n, \ n, \ n^2, \ n \log n, \ n!, \ 2^n, \ e^n, \ n^n\)

- \(\log n = O(n)\)
- \(n = O(n \log n)\)
- \(n \log n = O(n^2)\)
- \(n^2 = O(2^n)\)
- \(2^n = O(e^n)\)
- \(e^n = O(n!)\)
- \(n! = O(n^n)\)
Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time \(0.1n^2\) with an algorithm with running time \(1000n\)?
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time \(0.1n^2\)
 with an algorithm with running time \(1000n\)?

A:

- Sometimes yes
- However, when \(n\) is big enough, \(1000n < 0.1n^2\)
- For “natural” algorithms, constants are not so big!
- So, for reasonably large \(n\), algorithm with lower order running time beats algorithm with higher order running time.