CSE 431/531: Algorithm Analysis and Design (Fall 2022)

NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.

NP-Completeness provides **negative results**: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time
Efficient = Polynomial Time

- Polynomial time: \(O(n^k) \) for any constant \(k > 0 \)
- Example: \(O(n), O(n^2), O(n^{2.5} \log n), O(n^{100}) \)
- Not polynomial time: \(O(2^n), O(n^{\log n}) \)
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an \(O(n^k) \)-time algorithm, then \(k \) is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time \(\Omega(2^{nc}) \) for some \(c \)
- Do not need to worry about the computational model
1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$
Output: whether G contains a Hamiltonian cycle
Definition: Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

- The graph is called the **Petersen Graph**. It has no HC.
Hamiltonian Cycle (HC) Problem

Input: graph \(G = (V, E) \)
Output: whether \(G \) contains a Hamiltonian cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is unlikely that it can be solved in polynomial time.
Def. An independent set of \(G = (V, E) \) is a subset \(I \subseteq V \) such that no two vertices in \(I \) are adjacent in \(G \).
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Input: graph $G = (V, E)$
Output: the size of the maximum independent set of G
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
Formula Satisfiability

Input: boolean formula with \(n \) variables, with \(\lor, \land, \lnot \) operators.

Output: whether the boolean formula is satisfiable

- **Example:** \(\lnot((\lnot x_1 \land x_2) \lor (\lnot x_1 \land \lnot x_3) \lor x_1 \lor (\lnot x_2 \land x_3)) \) is not satisfiable

- **Trivial algorithm:** enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- **Formula Satisfiability is NP-hard**
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Shortest Path** | **Input:** graph $G = (V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L |
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Sorting problem
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 1111011111000111100001110001110111110001

13/65
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 1111011111100111110000111000001
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111011111000111111000011000001
 1100001101
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111100011111000011100000001
 110000110111111111000001
The input of an problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- Encode the sequence into a binary string as before
- \((0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)\)
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a polynomial running time if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.
Complexity Class P

Def. The *complexity class P* is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set
The Complexity Class NP

Def.
B is an **efficient certifier** for a problem *X* if

1. *B* is a polynomial-time algorithm that takes two input strings *s* and *t*, and outputs 0 or 1.
2. there is a polynomial function *p* such that, *X*(*s*) = 1 if and only if there is string *t* such that |*t*| ≤ *p*(|*s*|) and *B*(*s*, *t*) = 1.

The string *t* such that *B*(*s*, *t*) = 1 is called a **certificate**.
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- There is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G

Clearly, B runs in polynomial time

$HC(G) = 1 \iff \exists S$, $B(G, S) = 1$
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p

Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G

Clearly, B runs in polynomial time

$HC(G) = 1 \iff \exists S, B(G, S) = 1$
HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $\text{HC}(G) = 1 \iff \exists S, B(G, S) = 1$
MIS (Maximum Independent Set) \(\in\) NP

- **Input:** graph \(G = (V, E)\) and integer \(k\)

Clearly, \(B\) runs in polynomial time

\[
\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1
\]
MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B: $B((G, k), S) = 1$ if and only if S is an independent set in G

Clearly, B runs in polynomial time.
MIS (Maximum Independent Set) ∈ NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
 $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B: $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
MIS (Maximum Independent Set) $\in \text{NP}$

- **Input**: graph $G = (V, E)$ and integer k
- **Certificate**: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier B**: $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- **MIS**$(G, k) = 1$ \iff $\exists S$, $B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle

HC

Is $HC \in \text{NP}$?

Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.

Unlikely Alice can only convince Bob that G is a no-instance $HC \in \text{Co-NP}$.
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
HC

Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\overline{HC} \in NP \)?
- Can Alice convince Bob that \(G \) is a yes-instance (i.e, \(G \) does not contain a HC), if this is true.
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?

- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

- Unlikely
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

 Unlikely

- Alice can only convince Bob that G is a no-instance
\textbf{HC}

\textbf{Input:} graph $G = (V, E)$

\textbf{Output:} whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology \in Co-NP
Let $X \in P$ and $X(s) = 1$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help. The certificate is an empty string. Thus, $X \in NP$ and $P \subseteq NP$. Similarly, $P \subseteq \text{Co-NP}$, thus $P \subseteq NP \cap \text{Co-NP}$.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?
Let \(X \in P \) and \(X(s) = 1 \)

Q: How can Alice convince Bob that \(s \) is a yes instance?

A: Since \(X \in P \), Bob can check whether \(X(s) = 1 \) by himself, without Alice’s help.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in \text{NP}$ and $P \subseteq \text{NP}$
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

A famous, big, and fundamental open problem in computer science.

Little progress has been made.

Most researchers believe $P \neq NP$.

It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently.

We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

\[\text{if } P \neq NP, \text{ then } HC \in P, \text{ unless } P = NP. \]
Is P = NP?

- A famous, big, and fundamental open problem in computer science

- Most researchers believe P \neq NP

- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
Is $P = \text{NP}$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq \text{NP}$
- It would be too amazing if $P = \text{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq \text{NP}$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq \text{NP}$, then $\text{HC} \notin P$
 - $\text{HC} \notin P$, unless $P = \text{NP}$
Is \(NP = \text{Co-NP} \)?

Again, a big open problem
Is $NP = Co-NP$?

- Again, a big open problem
- Most researchers believe $NP \neq Co-NP$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- **People commonly believe we are in the 4th scenario**
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:
Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)
Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_P HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_P HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma \(HP \leq_P HC \).

Obs. \(G \) has a HP from \(s \) to \(t \) if and only if graph on right side has a HC.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.
NP-Completeness

Def. A problem X is called **NP-hard** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP.
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP).
Def. A problem X is called *NP-complete* if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems.
A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

- How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems
The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

\[x_1 \]
\[x_2 \]
\[x_3 \]
key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes \(n \) bits as input and outputs 0/1 with running time \(T(n) \) can be converted into a circuit of size \(p(T(n)) \) for some polynomial function \(p(\cdot) \).

- Then, we can show that any problem \(Y \in \text{NP} \) can be reduced to Circuit-Sat.
- We prove HC \(\leq_P \) Circuit-Sat as an example.
HC \leq_P \text{ Circuit-Sat}

\[
\text{check-HC}(G, S)
\]

- Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.
Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1

Construct a circuit \(C'\) for the algorithm check-HC
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1

Construct a circuit \(C'\) for the algorithm check-HC

hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\)
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-HC.

hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\).

\(G\) is a yes-instance if and only if \(C\) is satisfiable.
Let check-$Y(s, t)$ be the certifier for problem Y: check-$Y(s, t)$ returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-$Y(s, t)$ returns 1.

Construct a circuit C' for the algorithm check-Y.

hard-wire the instance s to the circuit C' to obtain the circuit C.

s is a yes-instance if and only if C is satisfiable.
$Y \leq_P \text{Circuit-Sat}, \text{ For Every } Y \in \text{NP}$

- Let $\text{check-}Y(s, t)$ be the certifier for problem Y: $\text{check-}Y(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that $\text{check-}Y(s, t)$ returns 1
- Construct a circuit C' for the algorithm $\text{check-}Y$
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems
3-CNF (conjunctive normal form) is a special case of formula:
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \cdots, x_n
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
3-CNF (conjunctive normal form) is a special case of formula:

- **Boolean variables**: x_1, x_2, \ldots, x_n
- **Literals**: x_i or $\neg x_i$
- **Clause**: disjunction (“or”) of at most 3 literals: $x_3 \lor \neg x_4$,
 $$x_1 \lor x_8 \lor \neg x_9, \quad \neg x_2 \lor \neg x_5 \lor x_7$$
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- **Boolean variables:** x_1, x_2, \cdots, x_n
- **Literals:** x_i or $\neg x_i$
- **Clause:** disjunction (“or”) of at most 3 literals: $x_3 \lor \neg x_4,
 x_1 \lor x_8 \lor \neg x_9, \; \neg x_2 \lor \neg x_5 \lor x_7$
- **3-CNF formula:** conjunction (“and”) of clauses:
 $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$
3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses. To satisfy a clause, we need to satisfy at least 1 literal.

Assignment

\(x_1 = 1 \), \(x_2 = 1 \), \(x_3 = 0 \), \(x_4 = 0 \) satisfies

\((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)\)
3-Sat

<table>
<thead>
<tr>
<th>Input:</th>
<th>a 3-CNF formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>whether the 3-CNF is satisfiable</td>
</tr>
</tbody>
</table>

- To satisfy a 3-CNF, we need to satisfy all clauses
3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)\]
Associate every wire with a new variable

The circuit is equivalent to the following formula:

\((x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10})
Circuit-Sat \leq_P 3-Sat

- Associate every wire with a new variable

The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7)$$
Circuit-Sat \leq_P 3-Sat

Associate every wire with a new variable
The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$
Circuit-Sat \leq_P 3-Sat

\[(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}\]

Convert each clause to a 3-CNF
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$
$$(x_1 \lor x_2 \lor \neg x_5) \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$(x_1 \lor x_2 \lor \neg x_5) \land$
Circuit-Sat \leq_P 3-Sat

\[(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}\]

Convert each clause to a 3-CNF

\[
x_5 = x_1 \lor x_2 \iff \\
(x_1 \lor x_2 \lor \neg x_5) \land (x_1 \lor \neg x_2 \lor x_5)
\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

\[x_5 = x_1 \lor x_2 \iff \]
\[(x_1 \lor x_2 \lor \neg x_5) \land \]
\[(x_1 \lor \neg x_2 \lor x_5) \land \]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \iff x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land (x_1 \lor \neg x_2 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_5)$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \iff x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

45/65
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land$$
$$(x_1 \lor \neg x_2 \lor x_5) \land$$
$$(\neg x_1 \lor x_2 \lor x_5) \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \(\leq_P \) 3-Sat

\[
(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\
\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\
\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}
\]

Convert each clause to a 3-CNF

\[
x_5 = x_1 \lor x_2 \iff
\]

\[
(x_1 \lor x_2 \lor \neg x_5) \land \Downarrow
\]

\[
(x_1 \lor \neg x_2 \lor x_5) \land
\]

\[
(\neg x_1 \lor x_2 \lor x_5) \land
\]

\[
(\neg x_1 \lor \neg x_2 \lor x_5)
\]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_5)</th>
<th>(x_5 \leftrightarrow x_1 \lor x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
Circuit-Sat $\leq_P 3$-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat
Reductions of NP-Complete Problems

Clique → Ind-Set → Vertex-Cover → Set-Cover

Circuit-Sat → 3-Sat → HC → TSP → Knapsack

3D-Matching → Subset-Sum → 3-Coloring
Recall: Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G = (V, E), k$

Output: whether there is an independent set of size k in G
3-Sat \leq_P Ind-Set

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\]
3-Sat \leq^P Ind-Set

- \[(x_1 \lor \lnot x_2 \lor \lnot x_3) \land (x_2 \lor x_3 \lor x_4) \land (\lnot x_1 \lor \lnot x_3 \lor x_4)\]

- A clause \Rightarrow a group of 3 vertices, one for each literal

- An edge between every pair of vertices in same group
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
3-Sat ≤ₚ Ind-Set

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\)

- A clause \(\Rightarrow\) a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size \(k = \#\) clauses
3-Sat \leq_P \text{Ind-Set}

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4) \)

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size \(k = \text{#clauses}\)

3-Sat instance is yes-instance \iff clique instance is yes-instance:
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$

3-Sat instance is yes-instance \iff clique instance is yes-instance:
- satisfying assignment \Rightarrow independent set of size k
- independent set of size k \Rightarrow satisfying assignment
Satisfying Assignment \Rightarrow IS of Size k

$$\left(x_1 \lor \neg x_2 \lor \neg x_3 \right) \land \left(x_2 \lor x_3 \lor x_4 \right) \land \left(\neg x_1 \lor \neg x_3 \lor x_4 \right)$$
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \vee \neg x_2 \vee \neg x_3) \land (x_2 \vee x_3 \vee x_4) \land (\neg x_1 \vee \neg x_3 \vee x_4)$

- For every clause, at least 1 literal is satisfied
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
Satisfying Assignment \(\Rightarrow \) IS of Size \(k \)

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\)

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent to the literal
- So, 1 literal from each group
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
Satisfying Assignment \Rightarrow IS of Size k

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\]

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k
IS of Size $k \implies$ Satisfying Assignment

$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS

- No contradictions among the selected literals
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
IS of Size $k \implies$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily
Reductions of NP-Complete Problems
Def. A clique in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$
Def. A clique in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$
Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.

Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G.
Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.

Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?
Clique \(\equiv_p \) Ind-Set

Def. Given a graph \(G = (V, E) \), define \(\overline{G} = (V, \overline{E}) \) be the graph such that \((u, v) \in \overline{E}\) if and only if \((u, v) \notin E\).

Obs. \(S \) is an independent set in \(G \) if and only if \(S \) is a clique in \(\overline{G} \).
Reductions of NP-Complete Problems
Vertex-Cover

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

![Graph Diagram]
Vertex-Cover

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.
Vertex-Cover

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G = (V, E)$ and integer k

Output: whether there is a vertex cover of G of size at most k
Vertex-Cover \equiv_p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G.
Vertex-Cover $=^p$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?
Vertex-Cover \equiv_P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G.
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_p X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once.
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X.
A Strategy of Polynomial Reduction

Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:

- s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
- s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y
Summary

- We consider decision problems
- Inputs are encoded as \(\{0, 1\} \)-strings

Def. The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP \) is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

1. $X \in$ NP, and
2. $Y \leq_P X$ for every $Y \in$ NP.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$
- Unless $P = NP$, a NP-complete problem cannot be solved in polynomial time
Summary

- 3D-Matching
- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- Set-Cover
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem \(X \in \text{NP} \), let \(B(s, t) \) be the certifier

- Convert \(B(s, t) \) to a circuit and hard-wire \(s \) to the input gates
- \(s \) is a yes-instance if and only if the resulting circuit is satisfiable

- Proof of NP-Completeness for other problems by reductions