The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time. Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5 \log n}), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time
Efficient \equiv Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient \equiv Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
- Do not need to worry about the computational model
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

The graph is called the **Petersen Graph**. It has no HC.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Running time: $O(n!) = 2O(n \lg n)$

Better algorithm: $2O(n)$

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- Formula Satisfiability is NP-hard
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be **encoded** as a binary string.
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101**11110001**
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11110111111000111100001110000001
Encoding

The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 11110111100011111000011000001

1100001101

1100001101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111100011111000011000001
 11000011011111111000001
The input of an problem will be encoded as a binary string.
The input of an problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

![Diagram of intervals](image-url)
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of an problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

- \((0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)\)
- Encode the sequence into a binary string as before
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

\(\{0, 1\}^* \): the set of all binary strings of any length.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a polynomial running time if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.
Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC.

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the \(2^{O(n)}\) time algorithm for HC
- Bob has a slow computer, which can only run an \(O(n^3)\)-time algorithm

Q: Given a graph \(G = (V, E)\) with a HC, how can Alice convince Bob that \(G\) contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of \(G\)

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set
Def. \(B \) is an efficient certifier for a problem \(X \) if

- \(B \) is a polynomial-time algorithm that takes two input strings \(s \) and \(t \)
- there is a polynomial function \(p \) such that, \(X(s) = 1 \) if and only if there is string \(t \) such that \(|t| \leq p(|s|) \) and \(B(s, t) = 1 \).

The string \(t \) such that \(B(s, t) = 1 \) is called a certificate.
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) \in NP

- **Input:** Graph G

Clearly, B runs in polynomial time

$\text{HC}(G) = 1 \iff \exists S, B(G, S) = 1$
HC (Hamiltonian Cycle) \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G that form a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier** B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time

$\text{HC}(G) = 1 \iff \exists S, B(G, S) = 1$
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph \(G \)
- Certificate: a sequence \(S \) of edges in \(G \) that form a Hamiltonian Cycle
- \(|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)\) for some polynomial function \(p \)
- Certifier \(B \): \(B(G, S) = 1 \) if and only if \(S \) is an HC in \(G \)
- Clearly, \(B \) runs in polynomial time
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a sequence S of edges in G that form a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time
- $HC(G) = 1 \iff \exists S, B(G, S) = 1$
MIS (Maximum Independent Set) ∈ NP

- Input: graph $G = (V, E)$ and integer k

Clearly, B runs in polynomial time

$\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1$
MIS (Maximum Independent Set) ∈ NP

- **Input**: graph $G = (V, E)$ and integer k
- **Certificate**: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k

- **Certificate:** a set $S \subseteq V$ of size k

- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

- **Certifier** B: $B((G, k), S) = 1$ if and only if S is an independent set in G

- Clearly, B runs in polynomial time
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k

- **Certificate:** a set $S \subseteq V$ of size k

- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

- **Certifier** B: $B((G, k), S) = 1$ if and only if S is an independent set in G

- Clearly, B runs in polynomial time

- $\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

- Is Circuit-Sat ∈ NP?
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

Is $\overline{HC} \in NP$?
\textbf{Input:} graph $G = (V, E)$

\textbf{Output:} whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology

Thus Tautology \(\in\) Co-NP

Indeed, Tautology = Formula-Unsat
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
- Indeed, Tautology = Formula-Unsat
Let $X \in P$ and $X(s) = 1$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

Thus, $X \in NP$ and $P \subseteq NP$.

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$.
P ⊆ NP

Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe $P \neq NP$

It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

if $P \neq NP$, then $HC \in P$, unless $P = NP$
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is \(P = \text{NP?} \)

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq \text{NP} \)
- It would be too amazing if \(P = \text{NP} \): if one can check a solution efficiently, then one can find a solution efficiently
Is \(P = \text{NP} \)?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq \text{NP} \)
- It would be too amazing if \(P = \text{NP} \): if one can check a solution efficiently, then one can find a solution efficiently
- We assume \(P \neq \text{NP} \) and prove that problems do not have polynomial time algorithms.
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

- if $P \neq NP$, then $HC \not\in P$
- $HC \not\in P$, unless $P = NP$
Is NP = Co-NP?

- Again, a big open problem
Is $\text{NP} = \text{Co-NP}$?

- Again, a big open problem
- Most researchers believe $\text{NP} \neq \text{Co-NP}$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- $P = \text{NP} = \text{Co-NP}$
- $\text{NP} = \text{Co-NP}$
- $P = \text{NP} \cap \text{Co-NP}$
- $\text{NP} \cap \text{Co-NP} \subseteq P \subseteq \text{Co-NP}$

• People commonly believe we are in the 4th scenario
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.
Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_P HC.
Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC.}$
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_{P} \text{HC}$.

![Diagram showing the reduction from Hamiltonian Path to Hamiltonian Cycle](image-url)
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_P HC.

Obs. G has a HP from s to t if and only if graph on right side has a HC.
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem

If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP.

NP-hard problems are at least as hard as NP-complete problems.

(a) NP-hard problem is not required to be in NP.

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.
NP-Completeness

Def. A problem X is called **NP-hard** if

1. $X \in NP$, and
2. $Y \leq_P X$ for every $Y \in NP$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

If X is NP-complete and $X \in P$, then $P = NP$.

To prove $P = NP$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $P \neq NP$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.

Def. A problem X is called **NP-complete** if

1. $X \in \mathsf{NP}$, and
2. $Y \leq_p X$ for every $Y \in \mathsf{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- If you believe $P \neq \mathsf{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
NP-Completeness

Def. A problem \(X \) is called **NP-complete** if

1. \(X \in \text{NP} \), and
2. \(Y \leq_P X \) for every \(Y \in \text{NP} \).

Theorem If \(X \) is NP-complete and \(X \in \text{P} \), then \(\text{P} = \text{NP} \).

- NP-complete problems are the hardest problems in NP.
- NP-hard problems are at least as hard as NP-complete problems. (A NP-hard problem is not required to be in NP.)

To prove \(\text{P} = \text{NP} \) (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe \(\text{P} \neq \text{NP} \), and proved that a problem \(X \) is NP-complete (or NP-hard), stop trying to design efficient algorithms for \(X \).
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.
Def. A problem \(X \) is called \textbf{NP-complete} if

1. \(X \in \text{NP}, \) and
2. \(Y \leq_P X \) for every \(Y \in \text{NP}. \)

How can we find a problem \(X \in \text{NP} \) such that every problem \(Y \in \text{NP} \) is polynomial time reducible to \(X \)? Are we asking for too much?
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems.
The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes \(n \) bits as input and outputs 0/1 with running time \(T(n) \) can be converted into a circuit of size \(p(T(n)) \) for some polynomial function \(p(\cdot) \).

1. Time 1
2. Time 2
3. Time 2
4. Time \(T \)
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
- We prove HC \leq_P Circuit-Sat as an example.
Let \(\text{check-HC}(G, S) \) be the certifier for the Hamiltonian cycle problem: \(\text{check-HC}(G, S) \) returns 1 if \(S \) is a Hamiltonian cycle in \(G \) and 0 otherwise.
HC \leq_p Circuit-Sat

Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

G is a yes-instance if and only if there is an S such that check-HC(G, S) returns 1
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1

Construct a circuit \(C'\) for the algorithm check-HC
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-HC.

Hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\).
Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

G is a yes-instance if and only if there is an S such that check-HC(G, S) returns 1.

Construct a circuit C' for the algorithm check-HC.

Hard-wire the instance G to the circuit C' to obtain the circuit C.

G is a yes-instance if and only if C is satisfiable.
Let \(\text{check-}Y(s, t) \) be the certifier for problem \(Y \): \(\text{check-}Y(s, t) \) returns 1 if \(t \) is a valid certificate for \(s \).

\(s \) is a yes-instance if and only if there is a \(t \) such that \(\text{check-}Y(s, t) \) returns 1.

Construct a circuit \(C' \) for the algorithm \(\text{check-}Y \).

hard-wire the instance \(s \) to the circuit \(C' \) to obtain the circuit \(C \).

\(s \) is a yes-instance if and only if \(C \) is satisfiable.
Let check-$Y(s, t)$ be the certifier for problem Y: check-$Y(s, t)$ returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-$Y(s, t)$ returns 1.

Construct a circuit C' for the algorithm check-Y.

hard-wire the instance s to the circuit C' to obtain the circuit C.

s is a yes-instance if and only if C is satisfiable.

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- Clique
- Ind-Set
- Vertex-Cover
- Set-Cover
- HC
- TSP
- 3D-Matching
- Subset-Sum
- 3-Coloring
- Knapsack
1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
We consider decision problems

Inputs are encoded as \(\{0, 1\} \)-strings

Def. The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP \) is the set of problems for which Alice can convince Bob a yes instance is a yes instance
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$.
- Unless $P = NP$, a NP-complete problem cannot be solved in polynomial time.
Summary

- 3D-Matching
- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- Set-Cover
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- HC
- 3D-Matching
- 3-Coloring
Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem \(X \in \text{NP} \), let \(B(s, t) \) be the certifier
Convert \(B(s, t) \) to a circuit and hard-wire \(s \) to the input gates
\(s \) is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions