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NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?




NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

@ A given problem X cannot be solved in polynomial time.

e Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!



e Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)
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Efficient = Polynomial Time

e Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time |
e For natural problems, if there is an O(n*)-time algorithm, then &k
is small, say 4

@ A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Q(2™) for some ¢

@ Do not need to worry about the computational model



© Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

0 Summary
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Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of GG exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle




Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of GG exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle




@ The graph is called the Petersen Graph. It has no HC.
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Input: graph G = (V, E)
Output: whether GG contains a Hamiltonian cycle
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle
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@ Running time: O(n!m) = 20(1en)
@ Better algorithm: 20(")

e Far away from polynomial time



Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(1en)
Better algorithm: 20(?)
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.



Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [ are adjacent in G.
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Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [ are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of G




Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [ are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of G

@ Maximum Independent Set is NP-hard



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \; A, = operators.

Output: whether the boolean formula is satisfiable

e Example: —((—xy A xg) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.



Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \; A, = operators.

Output: whether the boolean formula is satisfiable

e Example: —((—xy A xg) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

@ Formula Satisfiablity is NP-hard



@ Some Hard Problems

Q P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

Q Summary

10/76



Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no). J
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision problems.



Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X' of the problem. If we have a polynomial time algorithm for the
decision version X', we can solve the original problem X in
polynomial time.



Input: graph G = (V, E), weight w, s,t and a bound L
Output: whether there is a path from s to ¢ of length at most L
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Optimization to Decision

Shortest Path
Input: graph G = (V, E), weight w, s,t and a bound L
Output: whether there is a path from s to ¢ of length at most L

Maximum Independent Set
Input: a graph G and a bound %
Output: whether there is an independent set of size at least &



The input of a problem will be encoded as a binary string. )
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e Input: (3, 6, 100, 9, 60)
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e Input: (3, 6, 100, 9, 60)
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@ String:
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The input of a problem will be encoded as a binary string. J

e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)
@ String: 111101
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The input of a problem will be encoded as a binary string. J

e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)
@ String: 11110111110001
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The input of a problem will be encoded as a binary string. J

e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)
@ String: 111101111100011111000011000001
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The input of a problem will be encoded as a binary string. J

e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
1100001101
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The input of a problem will be encoded as a binary string. J

e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
110000110111111111000001
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The input of an problem will be encoded as a binary string. Ji
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The input of an problem will be encoded as a binary string. J
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The input of an problem will be encoded as a binary string. J

o)
=  _____

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8
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The input of an problem will be encoded as a binary string. J

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)
@ Encode the sequence into a binary string as before
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Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|. J

Q: Does it matter how we encode the input instances? J
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Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|. ‘

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not




Def. A decision problem X is a function mapping {0,1}* to {0,1}
such that for any s € {0,1}*, X(s) is the correct output for input s.

@ {0,1}*: the set of all binary strings of any length.
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Define Problem as a Function
X :{0,1}* = {0,1}

Def. A decision problem X is a function mapping {0,1}* to {0, 1}
such that for any s € {0,1}*, X(s) is the correct output for input s.

e {0,1}*: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s



Define Problem as a Function
X :{0,1}* = {0,1}

Def. A decision problem X is a function mapping {0,1}* to {0, 1}
such that for any s € {0,1}*, X(s) is the correct output for input s.

e {0,1}*: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(-) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.



Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.
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Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.
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@ Alice has a supercomputer, fast enough to run the 20" time
algorithm for HC
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@ Alice has a supercomputer, fast enough to run the 20" time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm
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Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E)) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?




Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E)) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of GG




Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E)) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.



@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm
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Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?




Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.
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algorithm
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A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

@ Certificate: a set of size k



Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

o Certificate: a set of size k
@ Certifier: check if the given set is really an independent set



The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and ¢, and outputs 0 or 1.

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that || < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.




The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and ¢, and outputs 0 or 1.

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that || < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.



@ Input: Graph G
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@ Input: Graph G

@ Certificate: a permutation S of V' that forms a Hamiltonian Cycle
@ |encoding(S)| < p(|encoding(G)|) for some polynomial function p

21/76



HC (Hamiltonian Cycle) € NP

Input: Graph G

Certificate: a permutation S of V' that forms a Hamiltonian Cycle

lencoding(S)| < p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) =1 if and only if S gives an HC in G

Clearly, B runs in polynomial time



HC (Hamiltonian Cycle) € NP

Input: Graph G

Certificate: a permutation S of V' that forms a Hamiltonian Cycle

lencoding(S)| < p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) =1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) =1 — S, B(G,S) =1



@ Input: graph G = (V, F) and integer k
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@ Input: graph G = (V, F) and integer k

@ Certificate: aset S C V of size &

@ |encoding(S)| < p(|encoding(G, k)|) for some polynomial function
p
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MIS (Maximum Independent Set) € NP

Input: graph G = (V, E) and integer k

Certificate: aset S CV of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial function
p

Certifier B: B((G,k),S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time



MIS (Maximum Independent Set) € NP

Input: graph G = (V, E) and integer k

Certificate: aset S CV of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial function
p

Certifier B: B((G,k),S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G,k)=1 <= 35, B(G.,k),S) =1



Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 17

L




Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 17

L

@ Is Circuit-Sat € NP?



Input: graph G = (V, E)
Output: whether GG does not contain a Hamiltonian cycle
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Input: graph G = (V, E)
Output: whether GG does not contain a Hamiltonian cycle

e Is HC € NP?
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HC
Input: graph G = (V, E)

Output: whether GG does not contain a Hamiltonian cycle

@ Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.
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Input: graph G = (V, E)
Output: whether GG does not contain a Hamiltonian cycle

@ Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

@ Unlikely



HC
Input: graph G = (V, E)
Output: whether GG does not contain a Hamiltonian cycle

@ Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

@ Unlikely

@ Alice can only convince Bob that G is a no-instance



HC
Input: graph G = (V, E)

Output: whether GG does not contain a Hamiltonian cycle

Is HC € NP?

Can Alice convince Bob that G is a yes-instance (i.e, G’ does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance
HC € Co-NP



Def. For a problem X, the problem X is the problem such that
X (s) = 1if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that X € NP. J
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Def. A tautology is a boolean formula that always evaluates to 1. J

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (mx1 Axa)V (—x1 A —xs) Vay V (nxe Axs) is a tautology



Def. A tautology is a boolean formula that always evaluates to 1. J

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (mx1 Axa)V (—x1 A —xs) Vay V (nxe Axs) is a tautology

@ Bob can certify that a formula is not a tautology



Def. A tautology is a boolean formula that always evaluates to 1. J

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (mx1 Axa)V (—x1 A —xs) Vay V (nxe Axs) is a tautology
@ Bob can certify that a formula is not a tautology
@ Thus Tautology € Co-NP
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@ Let X € Pand X(s) =1

Q: How can Alice convince Bob that s is a yes instance? )]
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@ Let X € Pand X(s) =1
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A: Since X € P, Bob can check whether X (s) = 1 by himself,
without Alice’s help.
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@ Let X € Pand X(s) =1

Q: How can Alice convince Bob that s is a yes instance? )

A: Since X € P, Bob can check whether X (s) = 1 by himself,
without Alice’s help.

@ The certificate is an empty string
@ Thus, X € NP and P C NP
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PC NP

@ Let X € Pand X(s) =1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X € P, Bob can check whether X (s) = 1 by himself,
without Alice's help.

@ The certificate is an empty string
@ Thus, X € NP and P C NP

@ Similarly, P C Co-NP, thus P € NP N Co-NP
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e A famous, big, and fundamental open problem in computer science

@ Most researchers believe P #£ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently
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ls P = NP?

e A famous, big, and fundamental open problem in computer science
o Little progress has been made
@ Most researchers believe P £ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently



ls P = NP?

e A famous, big, and fundamental open problem in computer science
o Little progress has been made
@ Most researchers believe P £ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

@ We assume P # NP and prove that problems do not have
polynomial time algorithms.



ls P = NP?

e A famous, big, and fundamental open problem in computer science
o Little progress has been made
@ Most researchers believe P £ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

@ We assume P # NP and prove that problems do not have
polynomial time algorithms.

e We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:
o if P # NP, then HC ¢ P
e HC ¢ P, unless P = NP



@ Again, a big open problem
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@ Again, a big open problem
@ Most researchers believe NP # Co-NP.
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Notice that X € NP <= X € Co-NP and P C NP N Co-NP

NP = Co-NP

P=NP = CO—NP @

NP N Co-NP
P = NP n Co-NP, @

@ People commonly believe we are in the 4th scenario
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@ Some Hard Problems

© P, NP and Co-NP

e Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

0 Summary
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Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.




Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.




Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.



Input: G=(V,E)and s,t €V
Output: whether there is a Hamiltonian path from s to t in G
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Input: G=(V,E)and s,t €V
Output: whether there is a Hamiltonian path from s to t in G

Lemma HP <p HC. )
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Input: G=(V,E)and s,t €V
Output: whether there is a Hamiltonian path from s to t in G

Lemma HP <p HC. )]

()

G
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC.




Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem |
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC.

Obs. G has a HP from s to t if and only if graph on right side has a
HC.

o710



Def. A problem X is called NP-complete if
© X € NP, and
Q@ Y <p X forevery Y € NP.
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NP-Completeness

Def. A problem X is called NP-hard if

Q@ Y <p X forevery Y € NP.

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



NP-Completeness

Def. A problem X is called NP-complete if
Q@ X € NP, and
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@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



NP-Completeness

Def. A problem X is called NP-complete if

Q@ X € NP, and
Q@ Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



NP-Completeness

Def. A problem X is called NP-complete if

Q@ X € NP, and
Q@ Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-complete problems are the hardest problems in NP
@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ NP-Complete Problems

© Dealing with NP-Hard Problems

0 Summary
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Def. A problem X is called NP-complete if
@ X € NP, and
Q@ Y <p X for every Y € NP.
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Def. A problem X is called NP-complete if
@ X € NP, and
Q@ Y <p X for every Y € NP.

@ How can we find a problem X & NP such that every problem Y €

NP is polynomial time reducible to X? Are we asking for too
much?

36/76



Def. A problem X is called NP-complete if
© X € NP, and
Q@ Y <p X for every Y € NP.

@ How can we find a problem X & NP such that every problem Y €
NP is polynomial time reducible to X? Are we asking for too
much?

@ No! There is indeed a large family of natural NP-complete
problems



Input: a circuit

Output: whether the circuit is satisfiable

T1e

T e

—

S
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Circuit-Sat is NP-Complete

@ key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T'(n) can be converted into a circuit of
size p(T'(n)) for some polynomial
function p(-).

program data

Time 1 ‘

Time 2

O

Time 2

A‘xl\m

Time T'




Circuit-Sat is NP-Complete

@ key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T'(n) can be converted into a circuit of
size p(T'(n)) for some polynomial
function p(-).

program data

Time 1 ‘ ‘

O

Time 2

A‘xl\m

Time 2

Time T' ‘ ‘

@ Then, we can show that any problem Y € NP can be reduced to

Circuit-Sat.

@ We prove HC <p Circuit-Sat as an example.



check-HC(G, S)

@ Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
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HC <p Circuit-Sat

check-HC(G, S)

@ Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

@ (5 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1
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@ Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.
@ (5 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

e Construct a circuit C’ for the algorithm check-HC
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@ Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

@ (5 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

e Construct a circuit C’ for the algorithm check-HC
@ hard-wire the instance G to the circuit C’ to obtain the circuit C



HC <p Circuit-Sat

check-HC(G, S) —* (o c
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S
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Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

(G is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C’ to obtain the circuit C
G is a yes-instance if and only if C' is satisfiable IE



Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable



Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable

Theorem Circuit-Sat is NP-complete.
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3-Sat
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3-CNF (conjunctive normal form) is a special case of formula:

42/76



3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1,x9, -+ , 2,

42/76



3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1,x9, -+ , 2,

o Literals: z; or —z;

42/76



3-CNF (conjunctive normal form) is a special case of formula:
@ Boolean variables: x1,x9, -+ , 2,
o Literals: z; or —z;

@ Clause: disjunction (“or") of at most 3 literals: x5V -4,
iL’l\/.I's\/_'.I'g, _|372\/_|.175\/a?7

42/76



3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+ , 2,

o Literals: z; or —z;

@ Clause: disjunction (“or") of at most 3 literals: x3 V =y,
fL’l\/[Eg\/_'ZEg, _|[E2\/_|ZE5\/ZL‘7

@ 3-CNF formula: conjunction (“and”) of clauses:
(.Tl V ) V _|l’3) A (ZL‘Q V x3 V CL’4) N (_'l’l V —T3 V _|l’4)



Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable
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Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

@ To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment 1 = 1,29 = 1,23 = 0, 24 = 0 satisfies

(21 V —wa Voxg) A (xg Vg Vay) A (mxy V -y V —xy)
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@ Associate every wire with a new variable
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@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:
([C4 = _|.Z'3) VAN (ZE5 = I vV .’L’z) AN (.’L‘ﬁ = _|£L'4)
/\(.I7:I‘1/\$2/\CC4)/\(£L‘8 :£E5\/£L'6)
A (.’1’59 :.’176V.T7) A($10 :.Tg/\.'l'}g/\x7) /\$10
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($4 = ﬁ373) AN (1)5 =1V ZL‘Q) VAN (ZL'G = _'£L‘4)
A(z7 =21 ANxa Ay) A (z8 = 25 V T6)
/\(IL‘g szVa:7) /\(.’Iilo :.'L'g/\{L'g/\LE7) /\.’Iilo

Convert each clause to a 3-CNF
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(1)4 = ﬁ373) AN (1)5 =1V 1‘2) VAN (ZL'(; = _|£E4)
A(z7 =21 ANxa Ay) A (z8 = 25 V T6)
/\(.Z'g ZIL'G\/IE7) /\(l'lo :l'g/\fl}g/\x7) /\Llilo

Convert each clause to a 3-CNF T1 T2 T | Ts > a1 VT2
0 0 O 1
Ts =21 VI & 0 0 1 0
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1
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/\(.279 IIL'G\/IE7) /\(l'lo :l'g/\fl}g/\x7) /\Llilo
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Ts < T1 V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

(1‘1 V i) V _|IL'5) VAN

R R R R OOO0OO
_H R, OORKRKMHE OO
R ORrRrRORrRORFRO
R O, OKF, OO
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Convert each clause to a 3-CNF

Ts =21 VIy <&

(1‘1 V i) V _|IL'5) VAN
A

(1'1 V X2 V $5)
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(1)4 = ﬁ,173) AN ($5 =1V 1‘2) VAN (ZL'G = _|£E4)
A(z7 =21 ANxa Ay) A (z8 = 25 V T6)
/\(.279 IIL'G\/ZE7) /\(l'lo :l'g/\fl}g/\xﬂ /\Llilo

Convert each clause to a 3-CNF T1 T2 Ty | Ty a1 VX2

0 0 0 1
Ts =211 VITy & 0 0 1 0

0 1 0 0
(21 VoV oxs) A 0 1 1 1
(1'1 V —xg V $5) VAN 1 0 0 0
(".7)1 V To V .’E5) AN 1 (])- g’) g‘)
("l‘l Vv X2 V 56'5) 1 1 1 1
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@ Circuit &= Formula < 3-CNF
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@ The circuit is satisfiable if and only if the 3-CNF is satisfiable
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@ Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit
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Circuit-Sat <p 3-Sat

e Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat



Circuit-Sat

3-Sat
L
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum
Set-Cover Knapsack
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Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem
Input: G = (V,E),k
Output: whether there is an independent set of size k in G




@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)
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@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3

vertices, one for each literal @‘@‘@
@ An edge between every pair of
vertices in same group @ @
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3-Sat <p Ind-Set

@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals




3-Sat <p Ind-Set

@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses




3-Sat <p Ind-Set

@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:



3-Sat <p Ind-Set

@ (z1VxeVxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:
@ satisfying assignment = independent set of size k

@ independent set of size k = satisfying assignment



@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)
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@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied
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@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal
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Satisfying Assignment = IS of Size k

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group




Satisfying Assignment = IS of Size k

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

e No contradictions among the
selected literals




Satisfying Assignment = IS of Size k

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

e No contradictions among the
selected literals

@ An IS of size k




@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)
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@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

e For every group, exactly one
literal is selected in IS
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IS of Size k£ = Satisfying Assignment

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals




IS of Size k£ = Satisfying Assignment

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

@ If x; is selected in IS, set x; = 1




IS of Size k£ = Satisfying Assignment

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

@ If x; is selected in IS, set x; = 1

o If —x; is selected in IS, set




IS of Size k£ = Satisfying Assignment

@ (1 Vxa Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

@ If x; is selected in IS, set x; = 1

o If —x; is selected in IS, set

@ Otherwise, set x; arbitrarily



Circuit-Sat

3-Sat
L N
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum
Set-Cover Knapsack
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Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J
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Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k£ > 0,
Output: whether there exists a clique of size k£ in G




Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E

Clique Problem
Input: G = (V, E) and integer k& > 0,
Output: whether there exists a clique of size k in G

@ What is the relationship between Clique and Ind-Set?



Def. Given a graph G' = (V, E), define G’ = (V, E) be the graph
such that (u,v) € £ if and only if (u,v) ¢ E.

Obs. S is an independent set in G if and only if S is a clique in G. J
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Circuit-Sat

3-Sat
L N
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E thenu e Sorve S .
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E thenu e Sorve S .
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Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E'thenu e Sorve S .

Vertex-Cover Problem
Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

o7 T
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Q: What is the relationship between Vertex-Cover and Ind-Set? J
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Q: What is the relationship between Vertex-Cover and Ind-Set? J

A: S is a vertex-cover of G = (V, E) if and only if V'\ S is an
independent set of G.
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Def. A k-coloring of G = (V,E) is a
function f:V — {1,2,3,--- ,k} so that
for every edge (u,v) € E, we have

f(u) # f(v). G is k-colorable if there is
a k-coloring of G.
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Def. A k-coloring of G = (V,E) is a
function f:V — {1,2,3,--- ,k} so that
for every edge (u,v) € E, we have

f(u) # f(v). G is k-colorable if there is
a k-coloring of G.
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k-coloring problem

Def. A k-coloring of G = (V, E) is a
function f:V — {1,2,3,--- ,k} so that
for every edge (u,v) € E, we have

f(u) # f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem
Input: a graph G = (V, E)
Output: whether G is k-colorable or not




Obs. A graph G is 2-colorable if and only if it is bipartite. )

Q: How do we check if a graph G is 2-colorable? )
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Obs. A graph G is 2-colorable if and only if it is bipartite. )
Q: How do we check if a graph G is 2-colorable? )
A: We check if GG is bipartite. )|
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@ Construct the base graph

Base Graph
True False
Base
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@ Construct the base graph

Base Graph

61,76



@ Construct the base graph

@ Construct a gadget from each clause: gadget is 3-colorable if and
only if the clause is satisfied.

Base Graph 1V xy Vs
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3-SAT <p 3-Coloring
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only if the clause is satisfied.

Base Graph x1V xo VT3
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A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once

@ That is, for a given instance sy for Y, we only construct one
instance sx for X



A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct in
polynomial time an instance sx of problem such that:
e sy is a yes-instance of Y = sx is a yes-instance of X
e sy is a yes-instance of X = sy is a yes-instance of Y



@ Some Hard Problems
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© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

0 Summary
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Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c™) for some constant ¢ > 1
o Best lower bound is Q(n)

@ Essentially we have no techniques for proving lower bound for
running time



@ Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms
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Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
e 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices
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Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees

@ bounded tree-width graphs
@ interval graphs

. ...
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Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is

O(n).)
e Brute-force algorithm: O(knk+1)
@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of £

@ Vertex-Cover is fixed-parameter
tractable.
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Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

@ There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

© Summary
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Summary

@ We consider decision problems

@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance



Summary

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t

@ there is a polynomial function p such that, X(s) = 1 if and only if
there is string ¢ such that || < p(|s|) and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.



Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X forevery Y € NP.

@ If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time



Circuit-Sat

3-Sat
L N
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum
Set-Cover Knapsack
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Summary

Proof of NP-Completeness for Circuit-Sat

@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier
Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions
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