NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are **positive results**: how to design efficient algorithms for solving a given problem.

NP-Completeness provides **negative results**: some problems cannot be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient $=$ Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^n)$ for some c
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$
- Not polynomial time: $O(2^n)$, $O(n^{\log n})$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time
Efficient \equiv Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient \equiv Polynomial Time
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
Efficient $= \text{Polynomial Time}$

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $= \text{Polynomial Time}$

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
Efficient $= \text{Polynomial Time}$

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $= \text{Polynomial Time}$

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph \(G = (V, E) \)

Output: whether \(G \) contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is unlikely that it can be solved in polynomial time.
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Diagram:

- Vertices are connected by lines indicating adjacency.
- The graph is a complete graph with 6 vertices.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

![Graph Diagram]

Maximum Independent Set is NP-hard
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximize Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- **Example:** $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- **Trivial algorithm:** enumerate all possible assignments, and check if each assignment satisfies the formula
Formula Satisfiability

Input: boolean formula with \(n \) variables, with \(\lor, \land, \neg \) operators.

Output: whether the boolean formula is satisfiable

- Example: \(\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)) \) is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula
- Formula Satisfiability is NP-hard
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact. For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
Encoding

The input of a problem will be \textit{encoded} as a binary string.
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: \((3, 6, 100, 9, 60) \)
The input of a problem will be encoded as a binary string.

Example: Sorting problem
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011110000110000011111111000001
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111100011110000111000001
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 1111011111000111110000110000011100011101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 11110111110001111111000011000001
 11000011011111111000001
 11000011011111111000001
The input of an problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of a problem will be \textit{encoded} as a binary string.

\textbf{Example: Interval Scheduling Problem}

\begin{itemize}
 \item (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
 \item Encode the sequence into a binary string as before
\end{itemize}
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).
Define Problem as a Set

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, $A(s) = 1$ if and only if $s \in X$.
Def. A **decision problem** X is the set of strings on which the output is yes. i.e., $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A **solves** a problem X if, $A(s) = 1$ if and only if $s \in X$.

Def. A has a **polynomial running time** if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most $p(|s|)$ steps.
Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.
The complexity class \mathbf{P} is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^O(n)$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC.
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

Certificate: a set of size k
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- **Certificate:** a set of size k
- **Certifier:** check if the given set is really an independent set
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other

![Graphs](image_url)
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other

What is the certificate?
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other

What is the certificate?

What is the certifier?
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.
The Complexity Class NP

Def. \(B \) is an efficient certifier for a problem \(X \) if

- \(B \) is a polynomial-time algorithm that takes two input strings \(s \) and \(t \)
- there is a polynomial function \(p \) such that, \(s \in X \) if and only if there is string \(t \) such that \(|t| \leq p(|s|) \) and \(B(s, t) = 1 \).

The string \(t \) such that \(B(s, t) = 1 \) is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
Hamiltonian Cycle ∈ NP

- Input: Graph G

$G \in HC \iff \exists S, B(G, S) = 1$

Certificate: a sequence S of edges in G such that $|encoding(S)| \leq p(|encoding(G)|)$ for some polynomial function p.

Certifier B: $B(G, S) = 1$ if and only if S is an HC in G. Clearly, B runs in polynomial time.
Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
Hamiltonian Cycle $\in \text{NP}$

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p

$G \in \text{HC} \iff \exists S, B(G, S) = 1$

Clearly, B runs in polynomial time.
Hamiltonian Cycle \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier B:** $B(G, S) = 1$ if and only if S is an HC in G
Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time
Hamiltonian Cycle \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier B:** $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time

$G \in \text{HC} \iff \exists S, B(G, S) = 1$
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f : V \rightarrow V$
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
Graph Isomorphism $\in \text{NP}$

- **Input:** two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- **Certificate:** a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- **Certifier B:** $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$.

Clearly, B runs in polynomial time ($G_1, G_2 \in GI \iff \exists f, B((G_1, G_2), f) = 1$).
Graph Isomorphism $\in \text{NP}$

- **Input:** two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- **Certificate:** a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- **Certifier B:** $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time
Graph Isomorphism \in NP

- **Input:** two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- **Certificate:** a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- **Certifier B:** $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time

$(G_1, G_2) \in \text{GI} \iff \exists f, B((G_1, G_2), f) = 1$
Maximum Independent Set \in NP

- Input: graph $G = (V, E)$ and integer k.
Maximum Independent Set \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
Maximum Independent Set \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
Maximum Independent Set \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S) = 1$ if and only if S is an independent set in G
Maximum Independent Set $\in \text{NP}$

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
Maximum Independent Set \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B: $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

$\forall (G, k) \in \text{MIS} \iff \exists S, B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

Is $HC \in NP$?

Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.

Unlikely Alice can only convince Bob that G is a no-instance $HC \in Co-NP$.
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
\(\textbf{HC} \)

Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\text{HC} \in \text{NP} \)?
- Can Alice convince Bob that \(G \) is a yes-instance (i.e, \(G \) does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that \(G \) is a no-instance
Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\overline{HC} \in NP \)?
- Can Alice convince Bob that \(G \) is a yes-instance (i.e., \(G \) does not contain a HC), if this is true.
 - Unlikely
- Alice can only convince Bob that \(G \) is a no-instance
- \(\overline{HC} \in \text{Co-NP} \)
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $s \in \overline{X}$ if and only if $s \notin X$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology

Thus Tautology \(\in\) \(\text{Co-NP}\)

Indeed, Tautology = Formula-Unsat
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
- Indeed, Tautology = Formula-Unsat
| **Input:** | an integer $q \geq 2$ |
| **Output:** | whether q is a prime |

It is easy to certify that q is not a prime.

Prime belongs to Co-NP [Pratt 1970].

Prime belongs to NP. P is a subset of NP intersect Co-NP (see soon).

If a natural problem X is in NP intersect Co-NP, then it is likely that $X \in P$ [AKS 2002].

Prime belongs to P.
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime

$\text{Prime} \in \text{Co-NP}$ (see Pratt 1970)

$\text{Prime} \in \text{NP}$

$P \subseteq \text{NP} \cap \text{Co-NP}$

If a natural problem X is in $\text{NP} \cap \text{Co-NP}$, then it is likely that $X \in P$ (see AKS 2002)
<table>
<thead>
<tr>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Output:</td>
</tr>
</tbody>
</table>

- It is easy to certify that q is not a prime
- $\text{Prime} \in \text{Co-NP}$
Prime

Input: an integer \(q \geq 2 \)

Output: whether \(q \) is a prime

- It is easy to certify that \(q \) is not a prime
- \(\text{Prime} \in \text{Co-NP} \)
- [Pratt 1970] \(\text{Prime} \in \text{NP} \)
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- $\text{Prime} \in \text{Co-NP}$
- [Pratt 1970] $\text{Prime} \in \text{NP}$
- $\text{P} \subseteq \text{NP} \cap \text{Co-NP}$ (see soon)
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- $\text{Prime} \in \text{Co-NP}$
- [Pratt 1970] $\text{Prime} \in \text{NP}$
- $\text{P} \subseteq \text{NP} \cap \text{Co-NP}$ (see soon)
- If a natural problem X is in $\text{NP} \cap \text{Co-NP}$, then it is likely that $X \in \text{P}$
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is **not** a prime
- $\text{Prime} \in \text{Co-NP}$
- [Pratt 1970] $\text{Prime} \in \text{NP}$
- $\text{P} \subseteq \text{NP} \cap \text{Co-NP}$ (see soon)
- If a natural problem X is in $\text{NP} \cap \text{Co-NP}$, then it is likely that $X \in \text{P}$
- [AKS 2002] $\text{Prime} \in \text{P}$
Let $X \in P$ and $s \in X$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help. The certificate is an empty string. Thus, $X \in NP$ and $P \subseteq NP$.

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$.

$P \subseteq NP$
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.
P \subseteq \text{NP}

- Let $X \in \text{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \text{P}$, Bob can check whether $s \in X$ by himself, without Alice’s help.

- The certificate is an empty string
Let $X \in P$ and $s \in X$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
Let $X \in P$ and $s \in X$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe $P \neq NP$

It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

Complexity assumption: $P \neq NP$

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

$\text{HC} / \in P$, unless $P = NP$
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
Is \(P = NP? \)

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq NP \)
- It would be too amazing if \(P = NP \): if one can check a solution efficiently, then one can find a solution efficiently
Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe P \(\neq\) NP
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: P \(\neq\) NP
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $P \neq NP$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
Is \(P = \text{NP?} \)

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq \text{NP} \)
- It would be too amazing if \(P = \text{NP} \): if one can check a solution efficiently, then one can find a solution efficiently

- Complexity assumption: \(P \neq \text{NP} \)
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if \(P \neq \text{NP} \), then \(\text{HC} \notin P \)
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

Complexity assumption: $P \neq NP$

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq NP$, then $HC \notin P$
- $HC \notin P$, unless $P = NP$
Is $NP = Co-NP$?

- Again, a big open problem
Is $\text{NP} = \text{Co-NP}$?

- Again, a big open problem
- Most researchers believe $\text{NP} \neq \text{Co-NP}$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- $P = \text{NP} = \text{Co-NP}$
- $\text{NP} = \text{Co-NP}$
- $\text{NP} \cap \text{Co-NP}$
- $P \subset \text{NP} \cap \text{Co-NP}$

- People commonly believe: we are in the 4th scenario
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results: Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results: Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma HP \(\leq_P \) HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma \(HP \leq_p HC \).
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

![Diagram of graphs showing the reduction from HP to HC]
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma \(HP \leq_P HC \).

Obs. \(G \) has a HP from \(s \) to \(t \) if and only if graph on right side has a HC.
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

Theorem: If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP.

NP-hard problems are at least as hard as NP-complete problems.

(a NP-hard problem is not required to be in NP)

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.

Def. A problem X is called **NP-hard** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems *(a NP-hard problem is not required to be in NP)*

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

Theorem

If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP.

NP-hard problems are at least as hard as NP-complete problems

(a NP-hard problem is not required to be in NP)

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.

NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \preceq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
NP-Completeness

Def. A problem X is called **NP-complete** if
1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP.
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP).
- To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \mathsf{NP}$, and
2. $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Theorem If X is NP-complete and $X \in \mathsf{P}$, then $\mathsf{P} = \mathsf{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove $\mathsf{P} = \mathsf{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
- If you believe $\mathsf{P} \neq \mathsf{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{\text{P}} X$ for every $Y \in \text{NP}$.
Def. A problem X is called \textbf{NP-complete} if

1. $X \in \text{NP}$, and
2. $Y \leq_{\text{P}} X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems.
The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

```
x_1
x_2
x_3
```
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.
key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.

We prove HC \leq_P Circuit-Sat as an example.
Let check-\(HC(G, S)\) be the certifier for the Hamiltonian cycle problem: check-\(HC(G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.
HC \leq_P Circuit-Sat

Let \text{check-HC}(G, S) be the certifier for the Hamiltonian cycle problem: \text{check-HC}(G, S) returns 1 if \(S \) is a Hamiltonian cycle in \(G \) and 0 otherwise.

\(G \) is a yes-instance if and only if there is an \(S \) such that \text{check-HC}(G, S) returns 1.
HC \leq_P \text{Circuit-Sat}

Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.

Construct a circuit C' for the algorithm check-HC.
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-HC.

hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\)
HC \leq_p \text{Circuit-Sat}

Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

\(G \) is a yes-instance if and only if there is an S such that check-HC(G, S) returns 1

Construct a circuit \(C' \) for the algorithm check-HC

hard-wire the instance \(G \) to the circuit \(C' \) to obtain the circuit \(C \)

\(G \) is a yes-instance if and only if \(C \) is satisfiable
$Y \leq_P \text{Circuit-Sat, For Every } Y \in \text{NP}$

- Let $\text{check-}Y(s, t)$ be the certifier for problem Y: $\text{check-}Y(s, t)$ returns 1 if t is a valid certificate for s.

- s is a yes-instance if and only if there is a t such that $\text{check-}Y(s, t)$ returns 1.

- Construct a circuit C' for the algorithm $\text{check-}Y$.

- Hard-wire the instance s to the circuit C' to obtain the circuit C.

- s is a yes-instance if and only if C is satisfiable.
Let check-\(Y(s, t)\) be the certifier for problem \(Y\): check-\(Y(s, t)\) returns 1 if \(t\) is a valid certificate for \(s\).

\(s\) is a yes-instance if and only if there is a \(t\) such that check-\(Y(s, t)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-\(Y\).

\(s\) is a yes-instance if and only if \(C\) is satisfiable.

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Summary

- We consider decision problems
- Inputs are encoded as \{0, 1\}-strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if
1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$
- Unless $P = NP$, a NP-complete problem can not be solved in polynomial time
Summary

- 3D-Matching
- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- Set-Cover
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- HC
- 3D-Matching
- 3-Coloring
- Vertex-Cover
- Set-Cover
- TSP
- Subset-Sum
- Knapsack
Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem $X \in \text{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable

- Proof of NP-Completeness for other problems by reductions