NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A: A given problem X cannot be solved in polynomial time.
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem. NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time. Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
Efficient = Polynomial Time

Polynomial time: $O(n^k)$ for any constant $k > 0$

Example: $O(n), O(n^2), O(n^{2.5 \log n}), O(n^{100})$

Not polynomial time: $O(2^n), O(n^{\log n})$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time
Efficient = Polynomial Time

- Polynomial time: \(O(n^k) \) for any constant \(k > 0 \)
- Example: \(O(n), O(n^2), O(n^{2.5} \log n), O(n^{100}) \)
- Not polynomial time: \(O(2^n), O(n^{\log n}) \)
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
Efficient $= \text{Polynomial Time}$

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$
- Not polynomial time: $O(2^n)$, $O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $= \text{Polynomial Time}$

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
Polynomial time: $O(n^k)$ for any constant $k > 0$

Example: $O(n)$, $O(n^2)$, $O(n^{2.5} \log n)$, $O(n^{100})$

Not polynomial time: $O(2^n)$, $O(n^{\log n})$

Almost all algorithms we learnt so far run in polynomial time

For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4

A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

- The graph is called the **Petersen Graph**. It has no HC.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
Hamiltonian Cycle (HC) Problem

Input: graph \(G = (V, E) \)

Output: whether \(G \) contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- **Running time:** \(O(n!m) = 2^{O(n \log n)} \)
- Better algorithm: \(2^{O(n)} \)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \log n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \log n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is unlikely that it can be solved in polynomial time.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

![Diagram of a graph with multiple vertices and edges representing an independent set.](image-url)
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with \(n\) variables, with \(\lor, \land, \neg\) operators.

Output: whether the boolean formula is satisfiable

- Example: \(\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)) \) is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula
Formula Satisfiability

Input: boolean formula with \(n \) variables, with \(\lor, \land, \neg \) operators.

Output: whether the boolean formula is satisfiable

- **Example:** \(\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)) \) is not satisfiable

- **Trivial algorithm:** enumerate all possible assignments, and check if each assignment satisfies the formula

- **Formula Satisfiability is NP-hard**
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).
Decision Problem Vs Optimization Problem

Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Sorting problem
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 1111011111000111110000110000011111111000001
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111100011110000011000001
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101111110001111110000110000011100001101

11000011101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 1111011111000111111000011000001
 1100001101111111000001
The input of an problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

 Encode the sequence into a binary string as before.
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of an problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

- $(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)$
- Encode the sequence into a binary string as before
Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The *size* of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).
Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, $A(s) = 1$ if and only if $s \in X$.
Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, $A(s) = 1$ if and only if $s \in X$.

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most $p(|s|)$ steps.
Def. The *complexity class* P is the set of decision problems X that can be solved in polynomial time.
Def. The complexity class \mathbb{P} is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in \mathbb{P}.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC.
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set.
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set
Graph Isomorphism

<table>
<thead>
<tr>
<th>Input:</th>
<th>two graphs G_1 and G_2,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>whether two graphs are isomorphic to each other</td>
</tr>
</tbody>
</table>
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other
Graph Isomorphism

Input: two graphs G_1 and G_2,

Output: whether two graphs are isomorphic to each other

What is the certificate?
Graph Isomorphism

Input: two graphs G_1 and G_2,
Output: whether two graphs are isomorphic to each other

- What is the certificate?
- What is the certifier?
Def. \(B \) is an **efficient certifier** for a problem \(X \) if

- \(B \) is a polynomial-time algorithm that takes two input strings \(s \) and \(t \)
- there is a polynomial function \(p \) such that, \(s \in X \) if and only if there is string \(t \) such that \(|t| \leq p(|s|) \) and \(B(s, t) = 1 \).

The string \(t \) such that \(B(s, t) = 1 \) is called a **certificate**.
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if
- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
Hamiltonian Cycle \in NP

- **Input:** Graph G

- **Certificate:** a sequence S of edges in G such that $|S| \leq p(|\text{encoding}(G)|)$ for some polynomial function p. The certifier B checks if S is an HC in G and runs in polynomial time. The problem $G \in \text{HC}$ if and only if there exists such a sequence S with $B(G, S) = 1$.
Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p

Certifier B:
$B(G, S) = 1$ if and only if S is an HC in G

Clearly, B runs in polynomial time.

$G \in \text{HC} \iff \exists S, B(G, S) = 1$
Hamiltonian Cycle \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier B:** $B(G, S) = 1$ if and only if S is an HC in G
Hamiltonian Cycle \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier** B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time
Hamiltonian Cycle \in NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier** B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time

$G \in \text{HC} \iff \exists S, \ B(G, S) = 1$
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
Graph Isomorphism ∈ NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f : V \rightarrow V$
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
Graph Isomorphism $\in \text{NP}$

- **Input:** two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- **Certificate:** a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- **Certifier B:** $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$. Clearly, B runs in polynomial time.
Graph Isomorphism \in NP

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- Certifier B: $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time
Graph Isomorphism \in NP

- **Input:** two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- **Certificate:** a 1-1 function $f : V \rightarrow V$
- $|\text{encoding}(f)| \leq p(|\text{encoding}(G_1, G_2)|)$ for some polynomial function p
- **Certifier B:** $B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \iff (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time

$$(G_1, G_2) \in \text{GI} \iff \exists f, B((G_1, G_2), f) = 1$$
Input: graph $G = (V, E)$ and integer k
Maximum Independent Set $\in \text{NP}$

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
Maximum Independent Set $\in \text{NP}$

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

Certifier B:

$B((G, k), S) = 1$ if and only if S is an independent set in G

Clearly, B runs in polynomial time ($G, k \in \text{MIS} \iff \exists S, B((G, k), S) = 1$)
Maximum Independent Set $\in \text{NP}$

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G
Maximum Independent Set \(\in \text{NP} \)

- **Input:** graph \(G = (V, E) \) and integer \(k \)
- **Certificate:** a set \(S \subseteq V \) of size \(k \)
- \(|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)\) for some polynomial function \(p \)
- **Certifier** \(B: B((G, k), S) = 1 \) if and only if \(S \) is an independent set in \(G \)
- Clearly, \(B \) runs in polynomial time
Input: graph $G = (V, E)$ and integer k

Certificate: a set $S \subseteq V$ of size k

$|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

Certifier B: $B((G, k), S) = 1$ if and only if S is an independent set in G

Clearly, B runs in polynomial time

$(G, k) \in \text{MIS} \iff \exists S, B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in NP$?
HC

Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\overline{HC} \in NP \)?
- Can Alice convince Bob that \(G \) is a yes-instance (i.e., \(G \) does not contain a HC), if this is true.
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
Def. For a problem X, the problem \overline{X} is the problem such that $s \in \overline{X}$ if and only if $s \notin X$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology ∈ Co-NP
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
- Indeed, Tautology = \(\overline{\text{Formula-Unsat}}\)
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime

$Prime \in \text{Co-NP}$ [Pratt 1970]

$Prime \in \text{NP}$

$P \subseteq \text{NP} \cap \text{Co-NP}$ (see soon)

If a natural problem X is in $\text{NP} \cap \text{Co-NP}$, then it is likely that $X \in P$ [AKS 2002]

$Prime \in P$
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP
Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP
- P \subseteq NP \cap Co-NP (see soon)
It is easy to certify that \(q \) is not a prime.

Prime \(\in \) Co-NP.

[Pratt 1970] Prime \(\in \) NP.

\(P \subseteq NP \cap Co-NP \) (see soon).

If a natural problem \(X \) is in \(NP \cap Co-NP \), then it is likely that \(X \in P \).
Prime

Input: an integer $q \geq 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime.
- $\text{Prime} \in \text{Co-NP}$
- [Pratt 1970] $\text{Prime} \in \text{NP}$
- $\text{P} \subseteq \text{NP} \cap \text{Co-NP}$ (see soon)
- If a natural problem X is in $\text{NP} \cap \text{Co-NP}$, then it is likely that $X \in \text{P}$
- [AKS 2002] $\text{Prime} \in \text{P}$
Let \(X \in P \) and \(s \in X \).

Q: How can Alice convince Bob that \(s \) is a yes instance?

A: Since \(X \in P \), Bob can check whether \(s \in X \) by himself, without Alice's help.

The certificate is an empty string.

Thus, \(X \in NP \) and \(P \subseteq NP \).

Similarly, \(P \subseteq Co-NP \), thus \(P \subseteq NP \cap Co-NP \).
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.
Let \(X \in P \) and \(s \in X \)

Q: How can Alice convince Bob that \(s \) is a yes instance?

A: Since \(X \in P \), Bob can check whether \(s \in X \) by himself, without Alice’s help.

- The certificate is an empty string
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
Let $X \in P$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $s \in X$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

A famous, big, and fundamental open problem in computer science. Little progress has been made. Most researchers believe $P \neq NP$. It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently.

Complexity assumption: $P \neq NP$. We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time: if $P \neq NP$, then $HC \notin P$, unless $P = NP$.
Is \(P = NP? \)

- A famous, big, and fundamental open problem in computer science
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe P ≠ NP
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is \(P = NP? \)

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq NP \)
- It would be too amazing if \(P = NP \): if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: \(P \neq NP \)
Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe P \(\neq \) NP
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: P \(\neq \) NP
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

- Complexity assumption: $P \neq NP$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
Is \(P = \text{NP} \)?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe \(P \neq \text{NP} \)
- It would be too amazing if \(P = \text{NP} \): if one can check a solution efficiently, then one can find a solution efficiently

- Complexity assumption: \(P \neq \text{NP} \)
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if \(P \neq \text{NP} \), then \(\text{HC} \notin P \)
 - \(\text{HC} \notin P \), unless \(P = \text{NP} \)
Again, a big open problem
Is $\text{NP} = \text{Co-NP}$?

- Again, a big open problem
- Most researchers believe $\text{NP} \neq \text{Co-NP}$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- $P = \text{NP} = \text{Co-NP}$
- $\text{NP} = \text{Co-NP}$
- $\text{NP} \cap \text{Co-NP}$
- $P \subseteq \text{NP} \cap \text{Co-NP}$

General belief: we are in the 4th scenario
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results: Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results: Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reduction: Example

<table>
<thead>
<tr>
<th>Hamiltonian-Path (HP) problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $G = (V, E)$ and $s, t \in V$</td>
</tr>
<tr>
<td>Output: whether there is a Hamiltonian path from s to t in G</td>
</tr>
</tbody>
</table>
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP \leq_P HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma \(HP \leq_P HC. \)
Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma \(HP \leq_p HC \).
Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma

\(\text{HP} \leq_P \text{HC} \)

Obs.

\(G \) has a HP from \(s \) to \(t \) if and only if graph on right side has a HC.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem: If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP.

NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP).

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.
NP-Completeness

Def. A problem X is called **NP-hard** if

1. $X \in \text{NP}$, and
2. $Y \leq^P X$ for every $Y \in \text{NP}$.

Theorem

If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in NP$, and
2. $Y \leq_P X$ for every $Y \in NP$.

Theorem If X is NP-complete and $X \in P$, then $P = NP$.

NP-complete problems are the hardest problems in NP. NP-hard problems are at least as hard as NP-complete problems. (A NP-hard problem is not required to be in NP.) To prove $P = NP$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem. If you believe $P \neq NP$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.

37/50
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $P = \text{NP}$.

- NP-complete problems are the hardest problems in NP.
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP).
NP-Completeness

Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for *any* NP-complete problem

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems.
Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable
key fact: algorithms can be converted to circuits

Fact: Any algorithm that takes n bits as input and outputs $0/1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
- We prove $\text{HC} \leq_P \text{Circuit-Sat}$ as an example.
Let \(\text{check-HC}(G, S)\) be the certifier for the Hamiltonian cycle problem: \(\text{check-HC}(G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.
Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.
HC \leq_P \text{Circuit-Sat}

Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.

G is a yes-instance if and only if there is an S such that check-HC(G, S) returns 1.

Construct a circuit C'' for the algorithm check-HC.
Let \(\text{check-HC}(G, S) \) be the certifier for the Hamiltonian cycle problem: \(\text{check-HC}(G, S) \) returns 1 if \(S \) is a Hamiltonian cycle is \(G \) and 0 otherwise.

\(G \) is a yes-instance if and only if there is an \(S \) such that \(\text{check-HC}(G, S) \) returns 1.

Construct a circuit \(C' \) for the algorithm \(\text{check-HC} \).

Hard-wire the instance \(G \) to the circuit \(C' \) to obtain the circuit \(C \).
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C''\) for the algorithm check-HC:

1. hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\).
2. \(G\) is a yes-instance if and only if \(C\) is satisfiable.
$Y \leq_P \text{Circuit-Sat, For Every } Y \in \text{NP}$

- Let $\text{check-}Y(s, t)$ be the certifier for problem Y: $\text{check-}Y(s, t)$ returns 1 if t is a valid certificate for s.

- s is a yes-instance if and only if there is a t such that $\text{check-}Y(s, t)$ returns 1

- Construct a circuit C' for the algorithm $\text{check-}Y$
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C' is satisfiable
Let check-\(Y(s, t)\) be the certifier for problem \(Y\): check-\(Y(s, t)\) returns 1 if \(t\) is a valid certificate for \(s\).

\(s\) is a yes-instance if and only if there is a \(t\) such that check-\(Y(s, t)\) returns 1

Construct a circuit \(C'\) for the algorithm check-\(Y\)

hard-wire the instance \(s\) to the circuit \(C'\) to obtain the circuit \(C\)

\(s\) is a yes-instance if and only if \(C\) is satisfiable

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
 - Clique
 - Ind-Set
 - Vertex-Cover
 - Set-Cover
 - HC
 - 3D-Matching
 - Subset-Sum
 - Knapsack
 - TSP
- Knapsack
- 3-Coloring
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
We consider decision problems
Inputs are encoded as \(\{0, 1\}\)-strings

Def. The complexity class \(P\) is the set of decision problems \(X\) that can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential time algorithm
Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP\) is the set of problems for which Alice can convince Bob a yes instance is a yes instance
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class \mathbf{NP} is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

1. $X \in NP$, and
2. $Y \leq_P X$ for every $Y \in NP$.

If any NP-complete problem can be solved in polynomial time, then $P = NP$.

Unless $P = NP$, a NP-complete problem can not be solved in polynomial time.
Circuit-Sat

3-Sat

HC

3D-Matching

Subset-Sum

Knapsack

3-Coloring

Vertex-Cover

TSP

3-Coloring

Ind-Set

Vertex-Cover

Set-Cover

Clique

Ind-Set

Clique
Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem \(X \in \text{NP} \), let \(B(s, t) \) be the certifier
- Convert \(B(s, t) \) to a circuit and hard-wire \(s \) to the input gates
- \(s \) is a yes-instance if and only if the resulting circuit is satisfiable

- Proof of NP-Completeness for other problems by reductions