The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem \(X \) cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial time algorithm for solving \(X \). All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
Polynomial time: $O(n^k)$ for any constant $k > 0$

Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$

Not polynomial time: $O(2^n), O(n^{\log n})$

Almost all algorithms we learnt so far run in polynomial time
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
- Do not need to worry about the computational model
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

- The graph is called the **Petersen Graph**. It has no HC.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial time.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is **NP-hard**: it is **unlikely** that it can be solved in polynomial time.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

![Graph Illustration]
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

[Diagram of a graph with some vertices highlighted in red, indicating an independent set.]
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- **Example:** $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- **Trivial algorithm:** enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- **Formula Satisfiability is NP-hard**
1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph \(G = (V, E) \), weight \(w, s, t \) and a bound \(L \)

Output: whether there is a path from \(s \) to \(t \) of length at most \(L \)
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Sorting problem
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
The input of a problem will be *encoded* as a binary string.

Example: Sorting problem
- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 111101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111011110000110011000001111100
The input of a problem will be encoded as a binary string.

Example: Sorting problem
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 1111011111000011110000111000001
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 1111011111100011111000011000001

 1100001101

 1100001101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
 1110111100011111000011000001
 1100001101111111000001
 1100001101111111000001
The input of an problem will be encoded as a binary string.
The input of a problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

![Diagram showing intervals on a timeline]
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
- Encode the sequence into a binary string as before
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A **decision problem** \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) **solves** a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a **polynomial running time** if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
The complexity class P is the set of decision problems X that can be solved in polynomial time.
Complexity Class P

Def. The *complexity class* P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC.
Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a *certificate*, and the algorithm Bob runs is called a *certifier*.
Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set.

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- **Certificate:** a set of size k
- **Certifier:** check if the given set is really an independent set
The Complexity Class NP

Def. \(B \) is an **efficient certifier** for a problem \(X \) if

- \(B \) is a polynomial-time algorithm that takes two input strings \(s \) and \(t \)
- there is a polynomial function \(p \) such that, \(X(s) = 1 \) if and only if there is string \(t \) such that \(|t| \leq p(|s|) \) and \(B(s, t) = 1 \).

The string \(t \) such that \(B(s, t) = 1 \) is called a **certificate**.
The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G

Clearly, B runs in polynomial time

$HC(G) = 1 \iff \exists S, B(G, S) = 1$
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a sequence S of edges in G that form a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G that form a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time
HC (Hamiltonian Cycle) ∈ NP

- **Input:** Graph G
- **Certificate:** a sequence S of edges in G that form a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier B:** $B(G, S) = 1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time

$$HC(G) = 1 \iff \exists S, B(G, S) = 1$$
MIS (Maximum Independent Set) \(\in \text{NP} \)

- **Input:** graph \(G = (V, E) \) and integer \(k \)
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

Clearly, B runs in polynomial time

$\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1$
MIS (Maximum Independent Set) ∈ NP

- **Input:** graph $G = (V, E)$ and integer k

- **Certificate:** a set $S \subseteq V$ of size k

- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G

- Clearly, B runs in polynomial time
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier** B: $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\text{MIS}(G, k) = 1$ \iff $\exists S, B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle
HC

Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\overline{HC} \in \text{NP} \)?
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $HC \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
HC

Input: graph \(G = (V, E) \)

Output: whether \(G \) does not contain a Hamiltonian cycle

- Is \(\overline{HC} \in NP \)?
- Can Alice convince Bob that \(G \) is a yes-instance (i.e., \(G \) does not contain a HC), if this is true.
 - Unlikely
- Alice can only convince Bob that \(G \) is a no-instance
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus **Tautology** \(\in\) **Co-NP**
- Indeed, **Tautology** = **Formula-Unsat**
Let $X \in P$ and $X(s) = 1$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help. Thus, $X \in NP$ and $P \subseteq NP$.

Similarly, $P \subseteq \text{Co-NP}$, thus $P \subseteq NP \cap \text{Co-NP}$.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

The certificate is an empty string
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
P ⊆ NP

- Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is \(P = NP? \)

A famous, big, and fundamental open problem in computer science. Little progress has been made. Most researchers believe \(P \neq NP \). It would be too amazing if \(P = NP \): if one can check a solution efficiently, then one can find a solution efficiently. We assume \(P \neq NP \) and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

\[
\text{if } P \neq NP, \text{ then } HC \notin P, \text{ unless } P = NP.
\]
Is $P = \text{NP}$?

- A famous, big, and fundamental open problem in computer science

- Most researchers believe $P \neq \text{NP}$

- It would be too amazing if $P = \text{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently

- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \not\in P$
 - $HC \not\in P$, unless $P = NP$
Is NP = Co-NP?

- Again, a big open problem
Is \(\text{NP} = \text{Co-NP} \)?

- Again, a big open problem
- Most researchers believe \(\text{NP} \neq \text{Co-NP} \).
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- $P = \text{NP} = \text{Co-NP}$
- $NP = \text{Co-NP}$
- $NP \cap \text{Co-NP} = P$
- $NP \subseteq P \subseteq \text{NP} \cap \text{Co-NP}$

- People commonly believe we are in the 4th scenario
Outline

1 Some Hard Problems
2 P, NP and Co-NP
3 Polynomial Time Reductions and NP-Completeness
4 NP-Complete Problems
5 Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma HP \(\leq_P \) HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

[Diagram of graph G with vertices s and t]
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

Obs.

G has a HP from s to t if and only if the graph on the right side has a HC.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

Theorem

If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

NP-complete problems are the hardest problems in NP. NP-hard problems are at least as hard as NP-complete problems. (A NP-hard problem is not required to be in NP.)

To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem.

If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X.

34/47
NP-Completeness

Def. A problem X is called **NP-hard** if

$\forall Y \in NP, Y \leq_P X$

NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- If you believe $P \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems
 (a NP-hard problem is not required to be in NP)

- If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is
 NP-complete (or NP-hard), stop trying to design efficient
 algorithms for X
NP-Completeness

Def. A problem X is called **NP-complete** if
1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove $\text{P} = \text{NP}$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
- If you believe $\text{P} \neq \text{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Summary
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and

2. $Y \leq_p X$ for every $Y \in \text{NP}$.
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
A problem X is called \textbf{NP-complete} if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems.
Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in \text{NP}$ can be reduced to Circuit-Sat.
- We prove $\text{HC} \leq_P \text{Circuit-Sat}$ as an example.
Let check-\(HC(G, S) \) be the certifier for the Hamiltonian cycle problem: check-\(HC(G, S) \) returns 1 if \(S \) is a Hamiltonian cycle in \(G \) and 0 otherwise.
HC \leq_P Circuit-Sat

- Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-HC.
Let \(\text{check-HC}(G, S) \) be the certifier for the Hamiltonian cycle problem: \(\text{check-HC}(G, S) \) returns 1 if \(S \) is a Hamiltonian cycle in \(G \) and 0 otherwise.

\(G \) is a yes-instance if and only if there is an \(S \) such that \(\text{check-HC}(G, S) \) returns 1.

Construct a circuit \(C' \) for the algorithm check-HC.

Hard-wire the instance \(G \) to the circuit \(C' \) to obtain the circuit \(C \).
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle is \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

Construct a circuit \(C'\) for the algorithm check-HC.

hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\).

\(G\) is a yes-instance if and only if \(C\) is satisfiable.
Let check-$Y(s, t)$ be the certifier for problem Y: check-$Y(s, t)$ returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-$Y(s, t)$ returns 1

Construct a circuit C' for the algorithm check-Y

hard-wire the instance s to the circuit C' to obtain the circuit C

s is a yes-instance if and only if C is satisfiable
Let check-$Y(s, t)$ be the certifier for problem Y: check-$Y(s, t)$ returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-$Y(s, t)$ returns 1.

Construct a circuit C' for the algorithm check-Y.

hard-wire the instance s to the circuit C' to obtain the circuit C.

s is a yes-instance if and only if C is satisfiable.

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems

- Circuit-Sat
- 3-Sat
- Clique
- Ind-Set
- HC
- 3D-Matching
- 3-Coloring
- Vertex-Cover
- TSP
- Subset-Sum
- Knapsack
1. Some Hard Problems

2. P, NP and Co-NP

3. Polynomial Time Reductions and NP-Completeness

4. NP-Complete Problems

5. Summary
Summary

- We consider decision problems
- Inputs are encoded as \(\{0, 1\}\)-strings

Def. The complexity class \(P\) is the set of decision problems \(X\) that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP\) is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Summary

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class \textbf{NP} is the set of all problems for which there exists an efficient certifier.
Summary

Def. Given a black box algorithm \(A \) that solves a problem \(X \), if any instance of a problem \(Y \) can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to \(A \), then we say \(Y \) is polynomial-time reducible to \(X \), denoted as \(Y \leq_P X \).

Def. A problem \(X \) is called NP-complete if
1. \(X \in NP \), and
2. \(Y \leq_P X \) for every \(Y \in NP \).

- If any NP-complete problem can be solved in polynomial time, then \(P = NP \)
- Unless \(P = NP \), a NP-complete problem can not be solved in polynomial time
Summary

- 3D-Matching
- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- Set-Cover
- Subset-Sum
- TSP
- Knapsack
- 3-Coloring
- Clique
- Ind-Set
- Vertex-Cover
- Set-Cover
- HC
- TSP
- Subset-Sum
- Knapsack
Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem \(X \in \text{NP} \), let \(B(s, t) \) be the certifier
- Convert \(B(s, t) \) to a circuit and hard-wire \(s \) to the input gates
- \(s \) is a yes-instance if and only if the resulting circuit is satisfiable

- Proof of NP-Completeness for other problems by reductions