The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?
The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems cannot be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time
Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant $k > 0$
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O(n^k)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{nc})$ for some c
- Do not need to worry about the computational model
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

- The graph is called the **Petersen Graph**. It has no HC.
Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G = (V, E)$

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph \(G = (V, E) \)

Output: whether \(G \) contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:
- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: \(O(n!m) = 2^{O(n \lg n)} \)
- Better algorithm: \(2^{O(n)} \)
- Far away from polynomial time
Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph \(G = (V, E) \)

Output: whether \(G \) contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: \(O(n!m) = 2^{O(n \lg n)} \)
- Better algorithm: \(2^{O(n)} \)
- Far away from polynomial time
- HC is **NP-hard**: it is unlikely that it can be solved in polynomial time.
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

![Diagram of a graph with nodes and edges]
Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

- **Input:** graph $G = (V, E)$
- **Output:** the size of the maximum independent set of G
Maximum Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard
Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
Formula Satisfiability

Input: boolean formula with \(n \) variables, with \(\lor, \land, \neg \) operators.

Output: whether the boolean formula is satisfiable

- Example: \(\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)) \) is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- Formula Satisfiability is NP-hard
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L
Optimization to Decision

Shortest Path

Input: graph \(G = (V, E) \), weight \(w, s, t \) and a bound \(L \)

Output: whether there is a path from \(s \) to \(t \) of length at most \(L \)

Maximum Independent Set

Input: a graph \(G \) and a bound \(k \)

Output: whether there is an independent set of size at least \(k \)
The input of a problem will be encoded as a binary string.
The input of a problem will be encoded as a binary string.

Example: Sorting problem
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:**
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 1111011111000111110000110000011111111000001
The input of a problem will be encoded as a binary string.

Example: Sorting problem
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011110000111000001
The input of a problem will be encoded as a binary string.

Example: Sorting problem
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 111101111100011111000001100000011100001101
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 11101111100011111000011000001100001101111111100001
The input of a problem will be encoded as a binary string.
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

![Diagram](image_url)
The input of a problem will be **encoded** as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
Encoding

The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- \((0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)\)
- Encode the sequence into a binary string as before
Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a polynomial running time if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
The complexity class \mathbf{P} is the set of decision problems X that can be solved in polynomial time.
Complexity Class P

Def. The *complexity class* P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G.

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G. Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G

- Certificate: a permutation S of V that forms a Hamiltonian Cycle $|encoding(S)| \leq p(|encoding(G)|)$ for some polynomial function p

Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G

Clearly, B runs in polynomial time

$HC(G) = 1 \iff \exists S, B(G, S) = 1$
HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
HC (Hamiltonian Cycle) ∈ NP

- **Input:** Graph \(G \)
- **Certificate:** a permutation \(S \) of \(V \) that forms a Hamiltonian Cycle
- \(|\text{encoding}(S)| \leq p(|\text{encoding}(G)|) \) for some polynomial function \(p \)
- **Certifier** \(B \): \(B(G, S) = 1 \) if and only if \(S \) gives an HC in \(G \)
- Clearly, \(B \) runs in polynomial time
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- HC$(G) = 1 \iff \exists S, B(G, S) = 1$
MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k

Clearly, B runs in polynomial time
MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

Clearly, B runs in polynomial time

$\text{MIS}(G, k) = 1 \iff \exists S, B((G, k), S) = 1$
MIS (Maximum Independent Set) ∈ NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- Certifier B: $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k

- **Certificate:** a set $S \subseteq V$ of size k

 $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p

- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G

- Clearly, B runs in polynomial time

- **MIS(G, k) = 1 $\iff \exists S, B((G, k), S) = 1$**
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat \in NP?
Input: graph $G = (V, E)$
Output: whether G does not contain a Hamiltonian cycle
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that G is a no-instance
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
- Unlikely

- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \(\in\) Co-NP
Let $X \in P$ and $X(s) = 1$.

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

The certificate is an empty string.

Thus, $X \in NP$ and $P \subseteq NP$.

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$.

$P \subseteq NP$
P ⊆ NP

Let \(X \in P \) and \(X(s) = 1 \)

Q: How can Alice convince Bob that \(s \) is a yes instance?
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice's help.

The certificate is an empty string
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$
Let $X \in P$ and $X(s) = 1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in P$, Bob can check whether $X(s) = 1$ by himself, without Alice’s help.

- The certificate is an empty string
- Thus, $X \in NP$ and $P \subseteq NP$

Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$
Is $P = NP$?

A famous, big, and fundamental open problem in computer science.

Little progress has been made.

Most researchers believe $P \neq NP$.

It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently.

We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

If $P \neq NP$, then $HC \in P$, unless $P = NP$.
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is $P = NP$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if $P = NP$: if one can check a solution efficiently, then one can find a solution efficiently
Is \(P = \text{NP?} \)

- A famous, big, and fundamental open problem in computer science.
- Little progress has been made.
- Most researchers believe \(P \neq \text{NP} \).
- It would be too amazing if \(P = \text{NP} \): if one can check a solution efficiently, then one can find a solution efficiently.
- We assume \(P \neq \text{NP} \) and prove that problems do not have polynomial time algorithms.
Is $P = \text{NP}$?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq \text{NP}$
- It would be too amazing if $P = \text{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

We assume $P \neq \text{NP}$ and prove that problems do not have polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq \text{NP}$, then $HC \notin P$
- $HC \notin P$, unless $P = \text{NP}$
Is \(NP = \text{Co-NP} \)?

- Again, a big open problem
Is $\text{NP} = \text{Co-NP}$?

- Again, a big open problem
- Most researchers believe $\text{NP} \neq \text{Co-NP}$.
4 Possibilities of Relationships

Notice that $X \in \text{NP} \iff \overline{X} \in \text{Co-NP}$ and $P \subseteq \text{NP} \cap \text{Co-NP}$

- $P = \text{NP} = \text{Co-NP}$
- $\text{NP} = \text{Co-NP}$
- $\text{NP} \cap \text{Co-NP}$
- $P \subseteq \text{NP} \cap \text{Co-NP}$

- People commonly believe we are in the 4th scenario
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:
Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: \(G = (V, E) \) and \(s, t \in V \)

Output: whether there is a Hamiltonian path from \(s \) to \(t \) in \(G \)

Lemma

\(HP \leq_p HC \).
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_p \text{HC}$.

![Graph G with nodes s and t]
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_{P} \text{HC}$.

![Diagram](image-url)
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G = (V, E)$ and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $\text{HP} \leq_P \text{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.
Def. A problem X is called NP-hard if

1. $X \in \mathsf{NP}$, and
2. $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
NP-Completeness

Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
NP-Completeness

Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_{P} X$ for every $Y \in \text{NP}$.

Theorem If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
Def. A problem X is called \textbf{NP-complete} if
\begin{enumerate}
 \item $X \in \text{NP}$, and
 \item $Y \leq_p X$ for every $Y \in \text{NP}$.
\end{enumerate}

\textbf{Theorem} If X is NP-complete and $X \in \text{P}$, then $\text{P} = \text{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?

No! There is indeed a large family of natural NP-complete problems
Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
Def. A problem X is called **NP-complete** if

1. $X \in \text{NP}$, and
2. $Y \leq_p X$ for every $Y \in \text{NP}$.

- How can we find a problem $X \in \text{NP}$ such that every problem $Y \in \text{NP}$ is polynomial time reducible to X? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems.
The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

```
x_1
x_2
x_3
```

[Diagram of a circuit with inputs x_1, x_2, and x_3 and various gates showing a satisfiable circuit output.]
key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.
Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes \(n \) bits as input and outputs 0/1 with running time \(T(n) \) can be converted into a circuit of size \(p(T(n)) \) for some polynomial function \(p(\cdot) \).

- Then, we can show that any problem \(Y \in \text{NP} \) can be reduced to Circuit-Sat.
- We prove \(\text{HC} \leq_P \text{Circuit-Sat} \) as an example.
HC \leq_P \text{Circuit-Sat}

\text{check-HC}(G, S)

- Let \text{check-HC}(G, S) be the certifier for the Hamiltonian cycle problem: \text{check-HC}(G, S) returns 1 if S is a Hamiltonian cycle in G and 0 otherwise.
Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

\(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.
Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

G is a yes-instance if and only if there is an S such that check-HC(G, S) returns 1

Construct a circuit C' for the algorithm check-HC
HC \leq_P \text{Circuit-Sat}

- Let check-HC\((G, S)\) be the certifier for the Hamiltonian cycle problem: check-HC\((G, S)\) returns 1 if \(S\) is a Hamiltonian cycle in \(G\) and 0 otherwise.

- \(G\) is a yes-instance if and only if there is an \(S\) such that check-HC\((G, S)\) returns 1.

- Construct a circuit \(C'\) for the algorithm check-HC.

- Hard-wire the instance \(G\) to the circuit \(C'\) to obtain the circuit \(C\).
HC \leq_P \text{Circuit-Sat}

Let $\text{check-HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: $\text{check-HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

G is a yes-instance if and only if there is an S such that $\text{check-HC}(G, S)$ returns 1.

Construct a circuit C' for the algorithm check-HC

hard-wire the instance G to the circuit C' to obtain the circuit C

G is a yes-instance if and only if C is satisfiable.
Let check-$Y(s, t)$ be the certifier for problem Y: check-$Y(s, t)$ returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-$Y(s, t)$ returns 1

Construct a circuit C' for the algorithm check-Y

hard-wire the instance s to the circuit C' to obtain the circuit C

s is a yes-instance if and only if C is satisfiable
Let check-Y(s, t) be the certifier for problem Y: check-Y(s, t) returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that check-Y(s, t) returns 1

Construct a circuit C' for the algorithm check-Y

hard-wire the instance s to the circuit C' to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.
Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

Clique
Ind-Set

Vertex-Cover

Set-Cover

HC

TSP

3D-Matching

Subset-Sum

Knapsack

3-Coloring
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \ldots, x_n
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- **Boolean variables**: x_1, x_2, \cdots, x_n
- **Literals**: x_i or $\neg x_i$
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: \(x_1, x_2, \ldots, x_n \)
- Literals: \(x_i \) or \(\neg x_i \)
- Clause: disjunction ("or") of at most 3 literals: \(x_3 \lor \neg x_4, x_1 \lor x_8 \lor \neg x_9, \neg x_2 \lor \neg x_5 \lor x_7 \)
3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- **Boolean variables:** x_1, x_2, \ldots, x_n
- **Literals:** x_i or $\neg x_i$
- **Clause:** disjunction ("or") of at most 3 literals: $x_3 \lor \neg x_4$, $x_1 \lor x_8 \lor \neg x_9$, $\neg x_2 \lor \neg x_5 \lor x_7$
- **3-CNF formula:** conjunction ("and") of clauses:

$$\left(x_1 \lor \neg x_2 \lor \neg x_3 \right) \land \left(x_2 \lor x_3 \lor x_4 \right) \land \left(\neg x_1 \lor \neg x_3 \lor \neg x_4 \right)$$
3-Sat

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable
3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses
3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
3-Sat

<table>
<thead>
<tr>
<th>Input:</th>
<th>a 3-CNF formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>whether the 3-CNF is satisfiable</td>
</tr>
</tbody>
</table>

- To satisfy a 3-CNF, we need to satisfy all clauses.
- To satisfy a clause, we need to satisfy at least 1 literal.
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies

$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$
Circuit-Sat \leq_P 3-Sat

Associate every wire with a new variable

The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$
Circuit-Sat \leq_P 3-Sat

- Associate every wire with a new variable
Circuit-Sat \leq_P 3-Sat

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$
(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)
\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)
\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}
$$
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat $\leq^P 3$-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$
$$(x_1 \lor x_2 \lor \neg x_5) \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$x_5 = x_1 \lor x_2 \iff$$

$$x_1 \lor x_2 \lor \neg x_5 \land$$

$$x_1 \lor \neg x_2 \lor x_5 \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \iff x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land$$
$$(x_1 \lor \neg x_2 \lor x_5) \land$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \leftrightarrow x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\
\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\
\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}

Convert each clause to a 3-CNF

\[x_5 = x_1 \lor x_2 \iff \]
\[(x_1 \lor x_2 \lor \neg x_5) \land \]
\[(x_1 \lor \neg x_2 \lor x_5) \land \]
\[(\neg x_1 \lor x_2 \lor x_5) \land \]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>\iff x_1 \lor x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

\[x_5 = x_1 \lor x_2 \iff \]

\[(x_1 \lor x_2 \lor \neg x_5) \land \]

\[(x_1 \lor \neg x_2 \lor x_5) \land \]

\[(\neg x_1 \lor x_2 \lor x_5) \land \]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_5</th>
<th>$x_5 \iff x_1 \lor x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$
$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$
$$\land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$x_5 = x_1 \lor x_2 \iff$

$$(x_1 \lor x_2 \lor \neg x_5) \land$$
$$(x_1 \lor \neg x_2 \lor x_5) \land$$
$$(\neg x_1 \lor x_2 \lor x_5) \land$$
$$(\neg x_1 \lor \neg x_2 \lor x_5)$$

$$\begin{array}{ccc|c}
 x_1 & x_2 & x_5 & x_5 \iff x_1 \lor x_2 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 1 & 1 \\
\end{array}$$
Circuit-Sat \leq_p 3-Sat

- Circuit \iff Formula \iff 3-CNF
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
Circuit-Sat \leq_P 3-Sat

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CN F is satisfiable
- The size of the 3-CN F formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat
Reductions of NP-Complete Problems

- 3D-Matching
- Circuit-Sat
- 3-Sat
- Ind-Set
- Vertex-Cover
- HC
- Set-Cover
- TSP
- Subset-Sum
- Knapsack
- 3-Coloring
Recall: Independent Set Problem

Def. An independent set of $G = (V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G = (V, E), k$

Output: whether there is an independent set of size k in G
3-Sat \leq_P Ind-Set

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\]
3-Sat \leq_P \text{Ind-Set}

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\)

- A clause \implies a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group

\[
\begin{align*}
&x_1 - \neg x_2 - \neg x_3 \\
&x_2 - x_3 - x_4 \\
&\neg x_1 - \neg x_3 - x_4
\end{align*}
\]
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$

3-Sat instance is yes-instance \iff Ind-Set instance is yes-instance: satisfying assignment \Rightarrow independent set of size $k \Rightarrow$ satisfying assignment
3-Sat \leq_P Ind-Set

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#$clauses

3-Sat instance is yes-instance \iff Ind-Set instance is yes-instance:
3-Sat \leq_P Ind-Set

- $((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4))$

- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k = \#\text{clauses}$

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:
- satisfying assignment \Rightarrow independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment
Satisfying Assignment \Rightarrow IS of Size k

$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$
Satisfying Assignment \implies IS of Size k

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4) \]

- For every clause, at least 1 literal is satisfied
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied

- Pick the vertex correspondent the literal
Satisfying Assignment \(\Rightarrow\) IS of Size \(k\)

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\)

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
Satisfying Assignment \Rightarrow IS of Size k

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent to the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k
IS of Size $k \Rightarrow$ Satisfying Assignment

\[
(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)
\]
IS of Size \(k \Rightarrow \) Satisfying Assignment

\[
(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)
\]

For every group, exactly one literal is selected in IS.
IS of Size $k \Rightarrow$ Satisfying Assignment

- \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)\)

- For every group, exactly one literal is selected in IS

- No contradictions among the selected literals
IS of Size $\kappa \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS

- No contradictions among the selected literals

- If x_i is selected in IS, set $x_i = 1$

- If $\neg x_i$ is selected in IS, set $x_i = 0$
IS of Size $k \Rightarrow$ Satisfying Assignment

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily
Reductions of NP-Complete Problems

Clique

Ind-Set

Vertex-Cover

Set-Cover

HC

TSP

Subset-Sum

Knapsack

3D-Matching

3-Coloring

Circuit-Sat

3-Sat

Clique

Ind-Set

Vertex-Cover

Set-Cover

HC

TSP

Subset-Sum

Knapsack

3D-Matching

3-Coloring
Def. A **clique** in an undirected graph \(G = (V, E) \) is a subset \(S \subseteq V \) such that \(\forall u, v \in S \) we have \((u, v) \in E \).
Def. A clique in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.
Def. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.

Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G
Definition. A **clique** in an undirected graph $G = (V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$.

Clique Problem

Input: $G = (V, E)$ and integer $k > 0$,

Output: whether there exists a clique of size k in G.

- What is the relationship between Clique and Ind-Set?
Clique \equiv_p Ind-Set

Def. Given a graph $G = (V, E)$, define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \overline{G}.
Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

Clique → Ind-Set

Ind-Set → Vertex-Cover

Vertex-Cover → Set-Cover

HC

3D-Matching

3-Coloring

3-Sat → TSP

TSP → Subset-Sum

Subset-Sum → Knapsack
Def. Given a graph $G = (V, E)$, a *vertex cover* of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G = (V, E)$ and integer k

Output: whether there is a vertex cover of G of size at most k.
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.
Vertex-Cover

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G = (V, E)$ and integer k

Output: whether there is a vertex cover of G of size at most k
Vertex-Cover \equiv_p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?
A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G.
Vertex-Cover \equiv_P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?
Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G = (V, E)$ if and only if $V \setminus S$ is an independent set of G.
Reductions of NP-Complete Problems

- Circuit-Sat
 - 3-Sat
 - 3-Coloring
 - 3D-Matching
 - Subset-Sum
 - Knapsack
 - TSP
 - Vertex-Cover
 - Set-Cover
 - HC
 - Ind-Set
 - Clique
k-coloring problem

Def. A k-coloring of $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, 3, \ldots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is k-colorable if there is a k-coloring of G.
Def. A \(k \)-coloring of \(G = (V, E) \) is a function \(f : V \rightarrow \{1, 2, 3, \ldots, k\} \) so that for every edge \((u, v) \in E\), we have \(f(u) \neq f(v) \). \(G \) is \(k \)-colorable if there is a \(k \)-coloring of \(G \).
k-coloring problem

Def. A *k*-coloring of \(G = (V, E) \) is a function \(f : V \rightarrow \{1, 2, 3, \cdots, k\} \) so that for every edge \((u, v) \in E \), we have \(f(u) \neq f(v) \). \(G \) is *k*-colorable if there is a *k*-coloring of \(G \).

Input: a graph \(G = (V, E) \)

Output: whether \(G \) is *k*-colorable or not
Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?
2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.
Construct the base graph

Base Graph

True

False

Base
3-SAT \leq^P 3-Coloring

- Construct the base graph

Base Graph

True \hspace{1cm} False

Base

\[\begin{align*}
 x_1 & \rightarrow \bar{x}_1 \\
 x_2 & \rightarrow \bar{x}_2 \\
 x_3 & \rightarrow \bar{x}_3 \\
 x_4 & \rightarrow \bar{x}_4
\end{align*} \]
Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$$x_1 \lor \neg x_2 \lor x_3$$
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

\[
\begin{align*}
&x_1
&\overline{x}_1 \\
&x_2
&\overline{x}_2 \\
&x_3
&\overline{x}_3 \\
&x_4
&\overline{x}_4
\end{align*}
\]

\[
x_1 \lor \neg x_2 \lor x_3
\]
3-SAT \(\leq_P \) 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

\[
x_1 \lor \neg x_2 \lor x_3
\]
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

```
x_1 \lor \neg x_2 \lor x_3
```

```
\begin{tikzpicture}
  \node (x1) at (0, 0) {$x_1$};
  \node (x2) at (1, 1) {$x_2$};
  \node (x3) at (2, 0) {$x_3$};
  \node (x4) at (1, 2) {$x_4$};
  \node (negx1) at (0, -1) {$\neg x_1$};
  \node (negx2) at (1, -1) {$\neg x_2$};
  \node (negx3) at (2, -1) {$\neg x_3$};
  \node (negx4) at (1, 3) {$\neg x_4$};

  \draw (x1) -- (x2);
  \draw (x1) -- (x3);
  \draw (x1) -- (x4);
  \draw (x2) -- (negx1);
  \draw (x2) -- (negx2);
  \draw (x3) -- (negx3);
  \draw (x4) -- (negx4);

  \draw[fill=green] (x1) circle (0.1);
  \draw[fill=red] (x2) circle (0.1);
  \draw[fill=red] (x3) circle (0.1);
  \draw[fill=red] (x4) circle (0.1);
  \draw[fill=green] (negx1) circle (0.1);
  \draw[fill=green] (negx2) circle (0.1);
  \draw[fill=green] (negx3) circle (0.1);
  \draw[fill=green] (negx4) circle (0.1);

  \node at (0, -2) {Base};
  \node at (1, 0) {True};
  \node at (2, -1) {False};
\end{tikzpicture}
```
3-SAT \(\leq_P \) 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

\[x_1 \lor \neg x_2 \lor x_3 \]
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

\[x_1 \lor \neg x_2 \lor x_3 \]

Base Graph

\[x_4 \lor \neg x_4 \]

\[x_1 \lor \neg x_2 \lor x_3 \]

\[x_4 \lor \neg x_4 \]

\[x_1 \lor \neg x_2 \lor x_3 \]

\[x_4 \lor \neg x_4 \]
3-SAT \(\leq_P\) 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

\[x_1 \lor \neg x_2 \lor x_3\]
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$\exists_1 \lor \neg x_2 \lor x_3$
3-SAT \(\leq_P \) 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

\[
x_1 \lor \neg x_2 \lor x_3
\]
Construct the base graph
Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

\[
x_1 \lor \neg x_2 \lor x_3
\]
Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$

True graph:
- x_1 (green)
- $\neg x_2$ (red)
- x_3 (green)

False graph:
- $\neg x_1$ (red)
- x_2 (green)
- x_3 (red)
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$$x_1 \lor \neg x_2 \lor x_3$$
Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

- $x_1 \lor \neg x_2 \lor x_3$

Graph representation:

- True
- False

Nodes:
- x_1
- \overline{x}_1
- x_2
- \overline{x}_2
- x_3
- \overline{x}_3
- x_4
- \overline{x}_4

Connections:
- x_1 to \overline{x}_1
- x_2 to \overline{x}_2
- x_3 to \overline{x}_3
- x_4 to \overline{x}_4
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$

True
False
Base

x_4
3-SAT \leq_p 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

```latex
\begin{align*}
& x_1 \quad \overline{x}_1 \\
& x_2 \quad \overline{x}_2 \\
& x_3 \quad \overline{x}_3 \\
& \overline{x}_4
\end{align*}
```

Clause Example

```
\begin{align*}
x_1 \lor \overline{x}_2 \lor x_3
\end{align*}
```

Gadget Diagram

- True
- False
- Base Graph
- $x_1 \lor \overline{x}_2 \lor x_3$
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$x_1 \lor \neg x_2 \lor x_3$
3-SAT \leq_P 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$$x_1 \lor \neg x_2 \lor x_3$$
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_p X$.
A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once.
A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once.
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X.
A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \implies s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \implies s_Y$ is a yes-instance of Y
1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Q: How far away are we from proving or disproving P = NP?
Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
Q: How far away are we from proving or disproving P = NP?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
Q: How far away are we from proving or disproving P = NP?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.

- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$
Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n =$ number variables
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$
 - Best lower bound is $\Omega(n)$
Q: How far away are we from proving or disproving $P = NP$?

- Try to prove an “unconditional” lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, $n = \text{number variables}$
 - Best algorithm runs in time $O(c^n)$ for some constant $c > 1$
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time
Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms
Faster Exponential Time Algorithms

3-SAT:

Brute-force: $O(2^n \cdot \text{poly}(n))$
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:
- Brute-force: $O(n! \cdot \text{poly}(n))$
3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:
- Brute-force: $O(n! \cdot \text{poly}(n))$
- Better algorithm: $O(2^n \cdot \text{poly}(n))$
Faster Exponential Time Algorithms

3-SAT:
- Brute-force: $O(2^n \cdot \text{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:
- Brute-force: $O(n! \cdot \text{poly}(n))$
- Better algorithm: $O(2^n \cdot \text{poly}(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on...
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on
- trees
- bounded tree-width graphs
- interval graphs
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- ...
Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Brute-force algorithm: $O(kn^{k+1})$

Better running time: $O(2^k \cdot kn)$
Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Brute-force algorithm: $O(kn^{k+1})$

Better running time: $O(2^k \cdot k n)$

Running time is $f(k)n^c$ for some c independent of k
Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Brute-force algorithm: $O(kn^{k+1})$

Better running time: $O(2^k \cdot kn)$

Running time is $f(k)n^c$ for some c independent of k

Vertex-Cover is fixed-parameter tractable.
Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution. We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time.

There is a 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover.
Approximation Algorithms

For optimization problems, approximation algorithms will find sub-optimal solutions in *polynomial time*.

Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution.
Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in **polynomial time**
- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time.
- **Approximation ratio** is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution.
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time.
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover.
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
Summary

- We consider decision problems
- Inputs are encoded as \(\{0, 1\} \)-strings

Def. The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP \) is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class **NP** is the set of all problems for which there exists an efficient certifier.
Summary

Def. Given a black box algorithm \(A \) that solves a problem \(X \), if any instance of a problem \(Y \) can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to \(A \), then we say \(Y \) is polynomial-time reducible to \(X \), denoted as \(Y \leq_P X \).

Def. A problem \(X \) is called NP-complete if

1. \(X \in NP \), and
2. \(Y \leq_P X \) for every \(Y \in NP \).

- If any NP-complete problem can be solved in polynomial time, then \(P = NP \)
- Unless \(P = NP \), a NP-complete problem can not be solved in polynomial time
Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is an efficient certifier.

Given a problem $X \in \text{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable

- Proof of NP-Completeness for other problems by reductions