Problem 1 (10 points) For each of the following recurrences, using the master theorem to give the asymptotically tight upper bound.
(a) \(T(n) = 4T(n/4) + O(n) \).
(b) \(T(n) = 3T(n/3) + O(n) \).
(c) \(T(n) = 4T(n/2) + O(n^3 \sqrt{n}) \).
(d) \(T(n) = 5T(n/2) + O(n) \).

Problem 2 (15 points) Consider a sequence of numbers defined using the following recursion:
\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
2 & \text{if } n = 2 \\
F_{n-3} + 2F_{n-2} + F_{n-1} & \text{if } n \geq 3
\end{cases}
\]

The first few numbers in the sequence is 0, 1, 2, 4, 9, 19, 41, 88, \ldots. Given an integer \(n \), you need to output \(F_n \). Assume you are given the implementation of the BigInteger class; each object of the class holds an integer as large as \(F_n \); the basic operations such addition, subtraction and multiplication for BigInteger class are also provided to you. Design an algorithm to compute \(F_n \) that uses \(O(\log n) \) basic operations over the BigInteger class.

Problem 3(15 points) Given two sorted arrays \(A \) and \(B \) with total size \(n \), you need to design and analyze an \(O(\log n) \)-time algorithm that outputs the median of the \(n \) numbers in \(A \) and \(B \). You can assume \(n \) is odd and all the numbers are distinct. For example, if \(A = [3, 5, 12, 18, 50] \) and \(B = [2, 7, 11, 30] \), then you need to output 11 since the set of numbers are \([2, 3, 5, 7, 11, 12, 18, 30, 50] \).
Problem 4 (40 points) We consider the following problem of counting strong inversions. Given an array A of n positive integers, a pair $i, j \in \{1, 2, 3, \ldots, n\}$ of indices is called a strong inversion if $i < j$ and $A[i] > 2A[j]$. The goal of the problem is to count the number of strong inversions for a given array A. Implement an $O(n \lg n)$-time divide-and-conquer algorithm that runs in $O(n \lg n)$ time to solve the problem. You need to read from the standard input (i.e., the terminal) and output to the standard output (i.e., the screen).

- **Input format:** The first line of the input contains one positive integer n, $1 \leq n \leq 10^6$. The next n lines contain the n integers $A[1], A[2], \ldots, A[n]$; every integer is between 0 and 10^8.

- **Output format:** Just output 1 line, which is total number of strong inversions.

| Input: 6 7 3 20 16 5 8 | Output: 4 | The pairs are (7, 3), (20, 5), (20, 8), (16, 5). |