Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. else
4. $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5. $C \leftarrow$ merge-sort($A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil$)
6. return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

Each level takes running time $O(n)$

There are $O(\lg n)$ levels

Running time $= O(n \lg n)$

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \log n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

```
 10  8  15  9  12
  8  9 10  12  15
```

- 4 inversions (for convenience, using numbers, not indices):
 - $(10, 8)$
 - $(10, 9)$
 - $(15, 9)$
 - $(15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1. \(c \leftarrow 0 \)
2. for every \(i \leftarrow 1 \) to \(n - 1 \)
3. for every \(j \leftarrow i + 1 \) to \(n \)
4. if \(A[i] > A[j] \) then \(c \leftarrow c + 1 \)
5. return \(c \)
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \lfloor n/2 \rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\begin{align*}
B: & \quad \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array} & \quad \text{total} = 18 \\
C: & \quad \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\end{align*}

\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{array}
\begin{array}{cccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}
\]
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count(B, C, n_1, n_2)

```plaintext
1. count ← 0;
2. A ← []; i ← 1; j ← 1
3. while $i \leq n_1$ or $j \leq n_2$
   4.   if $j > n_2$ or ($i \leq n_1$ and $B[i] \leq C[j]$) then
       5.     append $B[i]$ to $A$; $i ← i + 1$
       6.     count ← count + $(j - 1)$
   7.   else
       8.     append $C[j]$ to $A$; $j ← j + 1$
9. return $(A, count)$
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count(A, n)
1  if $n = 1$ then
2    return $(A, 0)$
3  else
4    $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5    $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6    $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7    return $(A, m_1 + m_2 + m_3)$
```

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count\((A, n)\)

1. if \(n = 1\) then
2. return \((A, 0)\)
3. else
4. \((B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)
5. \((C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)\)
6. \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)
7. return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
- Running time = \(O(n \log n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Quicksort vs Merge-Sort

<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Merge 2 sorted arrays</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Recurrence $T(n) \leq 2T(n/2) + O(n)$

Running time $= O(n \lg n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>if $n \leq 1$ then return A</td>
</tr>
<tr>
<td>2</td>
<td>$x \leftarrow$ a random element of A (x is called a pivot)</td>
</tr>
<tr>
<td>3</td>
<td>$A_L \leftarrow$ elements in A that are less than x (Divide)</td>
</tr>
<tr>
<td>4</td>
<td>$A_R \leftarrow$ elements in A that are greater than x (Divide)</td>
</tr>
<tr>
<td>5</td>
<td>$B_L \leftarrow$ quicksort(A_L, A_L.size) (Conquer)</td>
</tr>
<tr>
<td>6</td>
<td>$B_R \leftarrow$ quicksort(A_R, A_R.size) (Conquer)</td>
</tr>
<tr>
<td>7</td>
<td>$t \leftarrow$ number of times x appear in A</td>
</tr>
<tr>
<td>8</td>
<td>return the array obtained by concatenating B_L, the array containing t copies of x, and B_R</td>
</tr>
</tbody>
</table>
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use **pseudo-random-generator**, a deterministic algorithm returning numbers that “look like” random.
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort*(A, n)***

1. if ***n ≤ 1*** then return ***A***
2. **x** ← a random element of ***A*** (**x** is called a pivot)
3. ***A_L** ← elements in ***A*** that are less than ***x*** \ Divide
4. ***A_R** ← elements in ***A*** that are greater than ***x*** \ Divide
5. ***B_L** ← quicksort(*A_L*, *A_L*.size) \ Conquer
6. ***B_R** ← quicksort(*A_R*, *A_R*.size) \ Conquer
7. **t** ← number of times **x** appear ***A***
8. return the array obtained by concatenating ***B_L***, the array containing **t** copies of **x**, and ***B_R***

Lemma The expected running time of the algorithm is \(O(n \lg n) \).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition\((A, \ell, r)\)

1. \(p \leftarrow \) random integer between \(\ell\) and \(r\), swap \(A[p]\) and \(A[\ell]\)
2. \(i \leftarrow \ell, j \leftarrow r\)
3. while \(i < j\) do
 4. while \(i < j\) and \(A[i] \leq A[j]\) do \(j \leftarrow j - 1\)
 5. swap \(A[i]\) and \(A[j]\)
 6. while \(i < j\) and \(A[i] \leq A[j]\) do \(i \leftarrow i + 1\)
 7. swap \(A[i]\) and \(A[j]\)
8. \(\ell' \leftarrow i, r' \leftarrow i\)
9. for \(j \leftarrow i - 1\) down to \(\ell\)
 10. if \(A[j] = A[i]\) then \(\ell' \leftarrow \ell' - 1\) and swap \(A[\ell']\) and \(A[j]\)
11. for \(j \leftarrow i + 1\) to \(r\)
 12. if \(A[j] = A[i]\) then \(r' \leftarrow r' + 1\) and swap \(A[r']\) and \(A[j]\)
13. return \((\ell', r')\)
In-Place Implementation of Quick-Sort

quicksort(A, ℓ, r)

1. if ℓ ≥ r return
2. (ℓ′, r′) ← partition(A, ℓ, r)
3. quicksort(A, ℓ, ℓ′ − 1)
4. quicksort(A, r′ + 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Binary search tree diagram](diagram.png)
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

```plaintext
quicksort(A, n)

1. if n \leq 1 then return A
2. x ← lower median of A
3. A_L ← elements in A that are less than x
4. A_R ← elements in A that are greater than x
5. B_L ← quicksort(A_L, A_L.size)
7. t ← number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
```
Selection Algorithm with Median Finder

\[\text{selection}(A, n, i) \]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \text{ \textbackslash \textbackslash \text{ Divide}}
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \text{ \textbackslash \textbackslash \text{ Divide}}
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1cm} return \text{selection}(A_L, A_L.\text{size}, i) \text{ \textbackslash \textbackslash \text{ Conquer}}
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1cm} return \text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \text{ \textbackslash \textbackslash \text{ Conquer}}
9. else return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i)\]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \(\quad \text{// Divide} \)
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \(\quad \text{// Divide} \)
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1em} return selection\((A_L, A_L.\text{size}, i)\) \(\quad \text{// Conquer} \)
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1em} return selection\((A_R, A_R.\text{size}, i - (n - A_R.\text{size}))\) \(\quad \text{// Conquer} \)
9. else return \(x \)

- expected running time = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication(A, B, n)

1. let $C[k] = 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2. for $i \leftarrow 0$ to $n - 1$
3. for $j \leftarrow 0$ to $n - 1$
5. return C

Running time: $O(n^2)$
\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)\]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)\]

- \(p(x)\): degree of \(n - 1\) (assume \(n\) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x),\)
- \(p_H(x), p_L(x)\): polynomials of degree \(n/2 - 1\).

\[pq = (p_Hx^{n/2} + p_L)(q_Hx^{n/2} + q_L)\]
\[= p_Hq_Hx^n + (p_Hq_L + p_Lq_H)x^{n/2} + p_Lq_L\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n + \left(\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H) \right) \times x^{n/2} + \text{multiply}(p_L, q_L)
\]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_{H}, q_{H}) \]
\[r_L = \text{multiply}(p_{L}, q_{L}) \]

\[
multiply(p, q) = r_H \times x^n + \left(\text{multiply}(p_{H} + p_{L}, q_{H} + q_{L}) - r_H - r_L \right) \times x^{n/2} + r_L
\]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption
n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1. if $n = 1$ then return $(A[0]B[0])$
2. $A_L \leftarrow A[0 \ldots n/2 - 1]$, $A_H \leftarrow A[n/2 \ldots n - 1]$
3. $B_L \leftarrow B[0 \ldots n/2 - 1]$, $B_H \leftarrow B[n/2 \ldots n - 1]$
4. $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5. $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6. $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7. $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
8. for $i \leftarrow 0$ to $n - 2$ do
 9. $C[i] \leftarrow C[i] + C_L[i]$
 10. $C[i + n] \leftarrow C[i + n] + C_H[i]$
 11. $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12. return C
Outline

1. Divide-and-Conquer

2. Counting Inversions

3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

4. Polynomial Multiplication

5. Other Classic Algorithms using Divide-and-Conquer

6. Solving Recurrences

7. Computing n-th Fibonacci Number
• Closest pair
• Convex hull
• Matrix multiplication
• FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

- **Trivial algorithm:** \(O(n^2) \) running time
Divide
- Divide the points into two halves via a vertical line

Conquer
- Solve two sub-instances recursively

Combine
- Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: $\text{matrix-multiplication}(A, B, n)$

```plaintext
1. for $i \leftarrow 1$ to $n$
2.     for $j \leftarrow 1$ to $n$
3.         $C[i, j] \leftarrow 0$
4.     for $k \leftarrow 1$ to $n$
5.         $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return $C$
```

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\quad B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

matrix multiplication\((A, B)\) recursively calls
matrix multiplication\((A_{11}, B_{11})\),
matrix multiplication\((A_{12}, B_{21})\),
\ldots

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^\log_2 7) = O(n^{2.808})$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

 \[
 \begin{array}{c}
 n \\
 \downarrow \\
 n/2 \quad n/2 \\
 \downarrow \quad \downarrow \\
 n/4 \quad n/4 \\
 \downarrow \quad \downarrow \\
 n/8 \quad n/8 \quad n/8 \quad n/8 \\
 \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
 \vdots \quad \vdots \quad \vdots \quad \vdots \\
 \end{array}
 \]

- Each level takes running time \(O(n) \)
- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = (\frac{3}{4})^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg 2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **1 node**: \(n^c \)
- **\(a \) nodes**: \((n/b)^c \)
- **\(a^2 \) nodes**: \((n/b^2)^c \)
- **\(a^3 \) nodes**: \((n/b^3)^c \)

\[
\begin{align*}
\bullet & \quad c < \log_b a : \text{bottom-level dominates: } \left(\frac{a}{b^c} \right)^{\log_b n} n^c = n^{\log_b a} \\
\bullet & \quad c = \log_b a : \text{all levels have same time: } n^c \log_b n = O(n^c \log n) \\
\bullet & \quad c > \log_b a : \text{top-level dominates: } O(n^c)
\end{align*}
\]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots$

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
 4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time $= O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\ldots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2. $R \leftarrow \text{power}(\lfloor n/2 \rfloor)$

3. $R \leftarrow R \times R$

4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5. return R

Fib(n)

1. if $n = 0$ then return 0

2. $M \leftarrow \text{power}(n - 1)$

3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(lg n)$

Fixing the Problem

To compute F_n, we need $O(lg n)$ basic arithmetic operations on integers
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time