Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Representation of Graphs

- **Adjacency matrix**
 - $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise.
 - A is symmetric if graph is undirected.

- **Linked lists**
 - For every vertex v, there is a linked list containing all neighbours of v.

Diagram:

```
1 ---- 2 ---- 3 ---- 4 ---- 5
|      |      |      |
|      |      |      |
6      3      7      8
```

List of edges:

1. 2 → 3
2. 1 → 3 → 4 → 5
3. 1 → 2 → 5 → 7 → 8
4. 2 → 5
5. 2 → 3 → 4 → 6
6. 5
7. 3 → 8
8. 3 → 7
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u,v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td>(O(n))</td>
<td>(O(d_v))</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1. \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s\)
2. mark \(s\) as “visited” and all other vertices as “unvisited”
3. while \(\text{head} \geq \text{tail}\)
4. \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1\)
5. for all neighbours \(u\) of \(v\)
6. if \(u\) is “unvisited” then
7. \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u\)
8. mark \(u\) as “visited”

- Running time: \(O(n + m)\).
Example of BFS via Queue
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using a Stack

DFS(s)

1. `head ← 1, stack[1] ← s`
2. mark all vertices as “unexplored”
3. while `head ≥ 1`
4. `v ← stack[head], head ← head − 1`
5. if `v` is unexplored then
6. mark `v` as “explored”
7. for all neighbours `u` of `v`
8. if `u` is not explored then
9. `head ← head + 1, stack[head] = u`

- Running time: $O(n + m)$.
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Implementing DFS using Recurrsion

DFS(s)
1. mark all vertices as “unexplored”
2. recursive-DFS(s)

recursive-DFS(v)
1. if v is explored then return
2. mark v as “explored”
3. for all neighbours u of v
4. recursive-DFS(u)
Outline

1 Graphs

2 Connectivity and Graph Traversal
 - Testing Bipartiteness

3 Topological Ordering
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\cdots \)
- Report “not a bipartite graph” if contradiction was found
- If \(G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

BFS(s)

1. $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
2. Mark s as “visited” and all other vertices as “unvisited”
3. $color[s] \leftarrow 0$
4. While $head \geq tail$
5. \hspace{1em} $v \leftarrow queue[tail], tail \leftarrow tail + 1$
6. \hspace{1em} For all neighbours u of v
7. \hspace{2em} If u is “unvisited” then
8. \hspace{3em} $head \leftarrow head + 1, queue[head] = u$
9. \hspace{3em} Mark u as “visited”
10. \hspace{2em} $color[u] \leftarrow 1 - color[v]$
11. \hspace{1em} Elseif $color[u] = color[v]$ then
12. \hspace{2em} Print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. for each vertex \(v \in V \)
3. \[\text{if } v \text{ is “unvisited” then}\]
4. \[\text{test-bipartiteness}(v)\]
5. print(“\(G\) is bipartite”)

Obs. Running time of algorithm = \(O(n + m)\)

Homework problem: using DFS to implement test-bipartiteness.
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) \(G = (V, E) \)

Output: 1-to-1 function \(\pi : V \rightarrow \{1, 2, 3 \cdots, n\} \), so that
- if \((u, v) \in E \) then \(\pi(u) < \pi(v) \)
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1. let $d_v \leftarrow 0$ for every $v \in V$
2. for every $v \in V$
 3. for every u such that $(v, u) \in E$
 4. $d_u \leftarrow d_u + 1$
3. $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
4. while $S \neq \emptyset$
5. 6. $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
6. 7. $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
7. 8. for every u such that $(v, u) \in E$
6. 9. $d_u \leftarrow d_u - 1$
5. 10. if $d_u = 0$ then add u to S
4. 11. if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$