CSE 431/531: Algorithm Analysis and Design (Spring 2019)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
CSE 431/531: Algorithm Analysis and Design

- **Time and location:**
 - MoWeFr, 9:00-9:50am
 - Alumni 97
- **Instructor:**
 - Shi Li, shil@buffalo.edu
 - Office hours: TBD via poll
- **TA**
 - Alexander Stachnik, ajstachn@buffalo.edu
 - Office hours: TBD via poll
You **should** already know:

- **Mathematical Tools**
 - Mathematical inductions
 - Probabilities and random variables
- **Basic data Structures**
 - Stacks, queues, linked lists
- **Some Programming Experience**
 - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree

- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement

- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming

- NP-completeness
Tentative Schedule (42 Lectures)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lectures/Recitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Basic Graph Algorithms</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Divide and Conquer</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td></td>
<td>1 recitation for homeworks</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>Apr 7, 2019, Mon</td>
</tr>
<tr>
<td>NP-Completeness</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>4 lectures</td>
</tr>
<tr>
<td></td>
<td>2 recitations for homeworks</td>
</tr>
<tr>
<td>Final review, Q&A</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>May 15 2019, Wed, 8:00am-11:00am</td>
</tr>
</tbody>
</table>
Textbook

Textbook (Highly Recommended):
- **Algorithm Design**, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books
Highly recommended: read the correspondent sections from the textbook (or reference book) before classes

Slides and example problems for recitations will be posted online before class
40% for homeworks
- 5 homeworks, 3 of which have programming tasks

60% for mid-term + final exams, score for two exams is
\[
\max\{M \times 20\% + F \times 40\%, M \times 30\% + F \times 30\%\}
\]
\[
M, F \in [0, 100]
\]
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - **Must write down solutions on your own, in your own words**
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss
 (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to turn in a homework late for three days
- With no special reasons, no other late submissions will be accepted
● Mid-Term and Final Exam will be closed-book

● Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 ● “F” for the course
 ● may lose financial support
 ● case will be recorded in department and university databases

Questions?
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0 \)

Output: the greatest common divisor of \(a \) and \(b \)

Example:

- **Input:** 210, 270
- **Output:** 30

- **Algorithm:** Euclidean algorithm
 - \(\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60) \)
 - \((270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)\)
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence

such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, \ldots
Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, associated with a particular programming language.
Pseudo-Code

Pseudo-Code:

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \ \text{mod} \ b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
 - \(A[i + 1] \leftarrow A[i]\)
 - \(i \leftarrow i - 1\)
5. \(A[i + 1] \leftarrow key\)

- \(j = 6\)
- \(key = 15\)

12 15 21 35 53 59

↑
i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

- After $j = 1$: 53, 12, 35, 21, 59, 15
- After $j = 2$: 12, 53, 35, 21, 59, 15
- After $j = 3$: 12, 35, 53, 21, 59, 15
- After $j = 4$: 12, 21, 35, 53, 59, 15
- After $j = 5$: 12, 21, 35, 53, 59, 15
- After $j = 6$: 12, 15, 21, 35, 53, 59
Q: Size of input?
A: Running time as function of size
 possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

Q: Which input?
A: Worst-case analysis:
 Worst running time over all input instances of a given size

Q: How fast is the computer?
Q: Programming language?
A: Important idea: asymptotic analysis
 Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

1. $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
2. $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
3. $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$
4. $2^{n/3+100} + 100n^{100} = O(2^{n/3})$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

O-notation allows us to

- ignore architecture of computer
- ignore programming language
Asymptotic Analysis of Insertion Sort

insertion-sort\((A, n)\)

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
 5. \(A[i + 1] \leftarrow A[i]\)
 6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)

- Worst-case running time for iteration \(j\) in the outer loop?
 Answer: \(O(j)\)
- Total running time = \(\sum_{j=2}^{n} O(j) = O(n^2)\) (informal)

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers? Try to avoid using real numbers in this course.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort, heap sort, ...
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \) \quad Yes
- \(2^n - n^{20} \) \quad Yes
- \(100n - n^2/10 + 50? \) \quad No

We only consider asymptotically positive functions.
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}. $$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let $c = 4$ and $n_0 = 50$, for every $n > n_0 = 50$, we have,

$$3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$$

$$= -n^2 + 40n \leq 0.$$

$$3n^2 + 2n \leq c(n^2 - 10n)$$
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conventions

- We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)

“≈” is asymmetric! Following statements are wrong:
- \(O(n^3 - 10n) = 3n^2 + 2n \)
- \(O(n^2 + 5n) = 3n^2 + 2n \)
- \(O(n^2) = 3n^2 + 2n \)
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

Ω-Notation For a function $g(n)$,

$$Ω(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in Ω(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
Again, we use “=” instead of ∈.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>

Theorem $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
Θ-Notation
For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.

![Graph showing asymptotic behavior](image-url)
Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \right.$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Theorem $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations
- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy
- $f(n) = O(g(n))$ or $g(n) = O(f(n))$
Incorrect Analogy

- \(f(n) = O(g(n)) \) or \(g(n) = O(f(n)) \)

\[
\begin{align*}
 f(n) &= n^2 \\
 g(n) &= \begin{cases}
 1 & \text{if } n \text{ is odd} \\
 2^n & \text{if } n \text{ is even}
 \end{cases}
\end{align*}
\]
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, though weird
- $3n^2 - 10n - 5 = O(n^2)$ is simpler.
Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We do not use Ω and Θ very often when we talk about running times.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
\(o \) and \(\omega \)-Notations

\(o \)-Notation For a function \(g(n) \),
\[
o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

\(\omega \)-Notation For a function \(g(n) \),
\[
\omega(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]

Example:
- \(3n^2 + 5n + 10 = o(n^3) \), but \(3n^2 + 5n + 10 \neq o(n^2) \).
- \(3n^2 + 5n + 10 = \omega(n) \), but \(3n^2 + 5n + 10 \neq \omega(n^2) \).
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
<th>(o)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td>(=)</td>
<td>(<)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of n numbers

sum(A, n)

1. $S \leftarrow 0$
2. for $i \leftarrow 1$ to n

 3. $S \leftarrow S + A[i]$
4. return S
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
3 5 7 8 9 12 20 25 29 32 48
merge(B, C, n_1, n_2) \ \ \ B and C are sorted, with length n_1 and n_2

1. $A \leftarrow []; \ i \leftarrow 1; \ j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3. \ \ \ \ \ if ($B[i] \leq C[j]$) then
4. \ \ \ \ \ \ \ \ \ append $B[i]$ to A; \ $i \leftarrow i + 1$
5. \ \ \ \ \ else
6. \ \ \ \ \ \ \ \ \ append $C[j]$ to A; \ $j \leftarrow j + 1$
7. \ \ \ \ \ if $i \leq n_1$ then append $B[i..n_1]$ to A
8. \ \ \ \ \ if $j \leq n_2$ then append $C[j..n_2]$ to A
9. return A

Running time = $O(n)$ where $n = n_1 + n_2$.
merge-sort(A, n)

1. if \(n = 1 \) then
2. \(\text{return } A \)
3. else
4. \(B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor) \)
5. \(C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor) \)
6. \(\text{return merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor) \)
$O(n \lg n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$

- There are $O(\lg n)$ levels

- Running time $= O(n \lg n)$
$O(n^2)$ (Quadratic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

```
closest-pair(x, y, n)

1. bestd ← ∞
2. for $i ← 1$ to $n - 1$
3.   for $j ← i + 1$ to $n$
4.     $d ← \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5.     if $d < bestd$ then
6.       besti ← $i$, bestj ← $j$, bestd ← $d$
7. return (besti, bestj)
```

Closest pair can be solved in $O(n \lg n)$ time!
Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to n
3. for $j \leftarrow 1$ to n
4. for $k \leftarrow 1$ to n
5. $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return C
\(O(n^k)\) Running Time for Integer \(k \geq 4\)

Def. An independent set of a graph \(G = (V, E)\) is a subset \(S \subseteq V\) of vertices such that for every \(u, v \in S\), we have \((u, v) \notin E\).

Independent set of size \(k\)

Input: graph \(G = (V, E)\)

Output: whether there is an independent set of size \(k\)
$O(n^k)$ Running Time for Integer $k \geq 4$

<table>
<thead>
<tr>
<th>Independent Set of Size k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: graph $G = (V, E)$</td>
</tr>
<tr>
<td>Output: whether there is an independent set of size k</td>
</tr>
</tbody>
</table>

```
\[ \text{independent-set}(G = (V, E)) \]
```

1. for every set $S \subseteq V$ of size k
2. $b \leftarrow \text{true}$
3. for every $u, v \in S$
4. \hspace{1em} if $(u, v) \in E$ then $b \leftarrow \text{false}$
5. \hspace{1em} if b return true
6. return false

Running time $= O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume k is a constant)
Beyond Polynomial Time: $O(2^n)$

Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

```plaintext
max-independent-set(G = (V, E))

1. $R \leftarrow \emptyset$
2. for every set $S \subseteq V$
3.   $b \leftarrow \text{true}$
4.   for every $u, v \in S$
5.     if $(u, v) \in E$ then $b \leftarrow \text{false}$
6.     if $b$ and $|S| > |R|$ then $R \leftarrow S$
7. return $R$
```

Running time = $O(2^n n^2)$.
Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Hamiltonian($G = (V, E)$)

1. for every permutation (p_1, p_2, \cdots, p_n) of V
2. \[b \leftarrow \text{true} \]
3. for $i \leftarrow 1$ to $n - 1$
4. \[\text{if } (p_i, p_{i+1}) \notin E \text{ then } b \leftarrow \text{false} \]
5. \[\text{if } (p_n, p_1) \notin E \text{ then } b \leftarrow \text{false} \]
6. \[\text{if } b \text{ then return } (p_1, p_2, \cdots, p_n) \]
7. return “No Hamiltonian Cycle”

Running time = $O(n! \times n)$
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g., search 35 in the following array:

```
3  8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
$O(\lg n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

```
binary-search(A, n, t)

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3.     $k \leftarrow \lfloor (i + j)/2 \rfloor$
4.     if $A[k] = t$ return true
5.     if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false
```

Running time $= O(\lg n)$
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
 \(n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n \ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)

- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)!

- \(lg\ n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} \)
- \(lg\ n < n < n \ lg\ n < n^2 < n\sqrt{n} < n! \)
- \(lg\ n < n < n \ lg\ n < n^2 < n\sqrt{n} < 2^n < n! \)
- \(lg\ n < n < n \ lg\ n < n^2 < n\sqrt{n} < 2^n < e^n < n! \)
- \(lg\ n < n < n \ lg\ n = lg(n!) < n^2 < n\sqrt{n} < 2^n < e^n < n! \)
- \(lg\ n < n < n \ lg\ n = lg(n!) < n^2 < n\sqrt{n} < 2^n < e^n < n! < n^n \)
When we talk about upper bounds:

- Logarithmic time: \(\mathcal{O}(\log n) \)
- Linear time: \(\mathcal{O}(n) \)
- Quadratic time \(\mathcal{O}(n^2) \)
- Cubic time \(\mathcal{O}(n^3) \)
- Polynomial time: \(\mathcal{O}(n^k) \) for some constant \(k \)
- Exponential time: \(\mathcal{O}(c^n) \) for some \(c > 1 \)
- Sub-linear time: \(o(n) \)
- Sub-quadratic time: \(o(n^2) \)
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonable n, algorithm with lower order running time beats algorithm with higher order running time.