CSE 431/531: Algorithm Analysis and Design (Spring 2019)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
Time and location:
- MoWeFr, 9:00-9:50am
- Alumni 97

Instructor:
- Shi Li, shil@buffalo.edu
- Office hours: TBD via poll

TA
- Alexander Stachnik, ajstachn@buffalo.edu
- Office hours: TBD via poll
You **should** already know:

- **Mathematical Tools**
 - Mathematical inductions
 - Probabilities and random variables

- **Basic data Structures**
 - Stacks, queues, linked lists

- **Some Programming Experience**
 - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming
- NP-completeness
<table>
<thead>
<tr>
<th>Topic</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Basic Graph Algorithms</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Divide and Conquer</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td></td>
<td>1 recitation for homeworks</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>Apr 7, 2019, Mon</td>
</tr>
<tr>
<td>NP-Completeness</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>4 lectures</td>
</tr>
<tr>
<td></td>
<td>2 recitations for homeworks</td>
</tr>
<tr>
<td>Final review, Q&A</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>May 15 2019, Wed, 8:00am-11:00am</td>
</tr>
</tbody>
</table>
Textbook (Highly Recommended):

- *Algorithm Design*, 1st Edition, by *Jon Kleinberg* and *Eva Tardos*

Other Reference Books

Highly recommended: read the correspondent sections from the textbook (or reference book) before classes

Slides and example problems for recitations will be posted online before class
Grading

- 15% for participation
 - Quizzes given in a random chosen set of lectures.
 - Each quiz contains 1 short-answer question.
 - Submitting a solution gives 60% of the points for a quiz
 - Remaining 40% is given if the solution is correct.

- 35% for homeworks
 - 5 homeworks, 3 of which have programming tasks

- 50% for mid-term + final exams, score for two exams is
 \[
 \max\{M \times 10\% + F \times 40\%, M \times 20\% + F \times 30\%\}
 \]
 \[
 M, F \in [0, 100]
 \]
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - **Must write down solutions on your own, in your own words**
 - Write down names of students you collaborated with
For Homeworks, You Are **Not** Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to turn in a homework late for three days.
- With no special reasons, no other late submissions will be accepted.
- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - “F” for the course
 - may lose financial support
 - case will be recorded in department and university databases

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0 \)

Output: the greatest common divisor of \(a \) and \(b \)

Example:
- **Input:** 210, 270
- **Output:** 30

- **Algorithm:** Euclidean algorithm
- \(\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60) \)
- \((270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0) \)
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a_1', a_2', \cdots, a_n')\) of the input sequence such that \(a_1' \leq a_2' \leq \cdots \leq a_n'\)

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, ...
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

- Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, associated with a particular programming language.
Pseudo-Code

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1 Syllabus

2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Sorting Problem

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
At the end of \(j \)-th iteration, make the first \(j \) numbers sorted.

- **iteration 1:** 53, 12, 35, 21, 59, 15
- **iteration 2:** 12, 53, 35, 21, 59, 15
- **iteration 3:** 12, 35, 53, 21, 59, 15
- **iteration 4:** 12, 21, 35, 53, 59, 15
- **iteration 5:** 12, 21, 35, 53, 59, 15
- **iteration 6:** 12, 15, 21, 35, 53, 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

```
insertion-sort(A, n)
1. for j ← 2 to n
2.  key ← A[j]
3.  i ← j − 1
4.  while i > 0 and A[i] > key
6.     i ← i − 1
7.  A[i + 1] ← key
```

- \(j = 6 \)
- \(key = 15 \)

12 15 21 35 53 59
↑
i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Invariant: after iteration \(j \) of outer loop, \(A[1..j] \) is the sorted array for the original \(A[1..j] \).

- After \(j = 1 \): 53, 12, 35, 21, 59, 15
- After \(j = 2 \): 12, 53, 35, 21, 59, 15
- After \(j = 3 \): 12, 35, 53, 21, 59, 15
- After \(j = 4 \): 12, 21, 35, 53, 59, 15
- After \(j = 5 \): 12, 21, 35, 53, 59, 15
- After \(j = 6 \): 12, 15, 21, 35, 53, 59
Q: Size of input?
A: Running time as function of size
possible definition of size: \# integers, total length of integers, \# vertices in graph, \# edges in graph

Q: Which input?
A: Worst-case analysis:
 Worst running time over all input instances of a given size

Q: How fast is the computer?
Q: Programming language?
A: Important idea: asymptotic analysis
 Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$
- $2^{n/3+100} + 100n^{100} = O(2^{n/3})$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

O-notation allows us to
- ignore architecture of computer
- ignore programming language
Asymptotic Analysis of Insertion Sort

`insertion-sort(A, n)`

1. for `j ← 2` to `n`
2. `key ← A[j]`
3. `i ← j - 1`
4. while `i > 0` and `A[i] > key`
6. `i ← i - 1`
7. `A[i+1] ← key`

- Worst-case running time for iteration `j` in the outer loop?
 Answer: $O(j)$
- Total running time = $\sum_{j=2}^{n} O(j) = O(n^2)$ (informal)
Computation Model

- Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Precision of real numbers? Try to avoid using real numbers in this course.
- Can we do better than insertion sort asymptotically?
 - Yes: merge sort, quicksort, heap sort, ...
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an \textbf{asymptotically positive function} if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \quad \text{Yes} \)
- \(2^n - n^{20} \quad \text{Yes} \)
- \(100n - n^2/10 + 50 \quad ? \quad \text{No} \)

- We only consider asymptotically positive functions.
\textbf{O-Notation} For a function $g(n)$,

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
O-Notation: Asymptotic Upper Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

- $3n^2 + 2n \in O(n^2 - 10n)$

Proof.

Let $c = 4$ and $n_0 = 10$, for every $n > n_0 = 50$, we have,

$$3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$$

$$= -n^2 + 40n \leq 0.$$

$$3n^2 + 2n \leq c(n^2 - 10n)$$

\[\square\]
O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).

- \(3n^2 + 2n \in O(n^2 - 10n) \)
- \(3n^2 + 2n \in O(n^3 - 5n^2) \)
- \(n^{100} \in O(2^n) \)
- \(n^3 \not\in O(10n^2) \)

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conventions

- We use “\(f(n) = O(g(n)) \)” to denote “\(f(n) \in O(g(n)) \)”
- \(3n^2 + 2n = O(n^3 - 10n) \)
- \(3n^2 + 2n = O(n^2 + 5n) \)
- \(3n^2 + 2n = O(n^2) \)

“\(\equiv \)” is asymmetric! Following statements are wrong:

- \(O(n^3 - 10n) \equiv 3n^2 + 2n \)
- \(O(n^2 + 5n) \equiv 3n^2 + 2n \)
- \(O(n^2) \equiv 3n^2 + 2n \)

Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

Ω-Notation For a function $g(n)$,

$$Ω(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in Ω(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.
Ω-Notation: Asymptotic Lower Bound

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

![Diagram](image.png)
Again, we use “=” instead of \in.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td></td>
</tr>
</tbody>
</table>

Theorem \[f(n) = O(g(n)) \iff g(n) = \Omega(f(n)). \]
Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Theorem $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\lg^{10}n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations
- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy
- $f(n) = O(g(n))$ or $g(n) = O(f(n))$
Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$

\[
\begin{align*}
 f(n) &= n^2 \\
 g(n) &= \begin{cases}
 1 & \text{if } n \text{ is odd} \\
 2^n & \text{if } n \text{ is even}
 \end{cases}
\end{align*}
\]
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, although weird.
- $3n^2 - 10n - 5 = O(n^2)$ is simpler.
\(o\)-Notation For a function \(g(n)\),
\[
o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

\(\omega\)-Notation For a function \(g(n)\),
\[
\omega(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]

Example:
- \(3n^2 + 5n + 10 = o(n^2 \lg n)\).
- \(3n^2 + 5n + 10 = \omega(n^2/\lg n)\).
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
<th>(o)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>(\leq)</td>
<td>(\geq)</td>
<td>(=)</td>
<td>(<)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

Questions?
Outline

1 Syllabus

2 Introduction
 • What is an Algorithm?
 • Example: Insertion Sort
 • Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Computing the sum of n numbers

\[
\text{sum}(A, n) \\
\begin{align*}
1 & \quad S \leftarrow 0 \\
2 & \quad \text{for } i \leftarrow 1 \text{ to } n \\
3 & \quad \quad S \leftarrow S + A[i] \\
4 & \quad \text{return } S
\end{align*}
\]
\(O(n)\) (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}
\]
\(O(n) \) (Linear) Running Time

\[
\text{merge}(B, C, n_1, n_2) \quad \text{where } B \text{ and } C \text{ are sorted, with length } n_1 \text{ and } n_2
\]

1. \(A \leftarrow []; i \leftarrow 1; j \leftarrow 1 \)
2. while \(i \leq n_1 \) and \(j \leq n_2 \)
3. \hspace{1em} if \((B[i] \leq C[j]) \) then
4. \hspace{2em} append \(B[i] \) to \(A \); \(i \leftarrow i + 1 \)
5. \hspace{1em} else
6. \hspace{2em} append \(C[j] \) to \(A \); \(j \leftarrow j + 1 \)
7. if \(i \leq n_1 \) then append \(B[i..n_1] \) to \(A \)
8. if \(j \leq n_2 \) then append \(C[j..n_2] \) to \(A \)
9. return \(A \)

Running time = \(O(n) \) where \(n = n_1 + n_2 \).
merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. else
4. $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5. $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor$)
6. return merge($B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor$)
Merge-Sort

- Each level takes running time $O(n)$
- There are $O(lg \ n)$ levels
- Running time = $O(n \ lg \ n)$
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest

$O(n^2)$ (Quadratic) Running Time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

\[
\text{closest-pair}(x, y, n)
\]

1. \(bestd \leftarrow \infty \)
2. for \(i \leftarrow 1 \) to \(n - 1 \)
 3. for \(j \leftarrow i + 1 \) to \(n \)
 4. \(d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2} \)
 5. if \(d < bestd \) then
 6. \(besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d \)
 7. return \((besti, bestj)\)

Closest pair can be solved in \(O(n \lg n) \) time!
Multiply two matrices of size $n \times n$

```
matrix-multiplication(A, B, n)
1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to $n$
3.     for $j \leftarrow 1$ to $n$
4.         for $k \leftarrow 1$ to $n$
5.             $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return $C$
```
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k
Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

\[
\text{independent-set}(G = (V, E))
\]

1. for every set $S \subseteq V$ of size k
2. $b \leftarrow \text{true}$
3. for every $u, v \in S$
4. if $(u, v) \in E$ then $b \leftarrow \text{false}$
5. if b return true
6. return false

Running time $= O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assuming k is a constant)
Beyond Polynomial Time: \(O(2^n) \)

Maximum Independent Set Problem

Input: graph \(G = (V, E) \)

Output: the maximum independent set of \(G \)

\[
\text{max-independent-set}(G = (V, E))
\]

1. \(R \leftarrow \emptyset \)
2. for every set \(S \subseteq V \)
3. \(b \leftarrow \text{true} \)
4. for every \(u, v \in S \)
5. \(\text{if } (u, v) \in E \text{ then } b \leftarrow \text{false} \)
6. \(\text{if } b \text{ and } |S| > |R| \text{ then } R \leftarrow S \)
7. return \(R \)

Running time = \(O(2^n n^2) \).
Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Hamiltonian\((G = (V, E))\)

1. for every permutation \((p_1, p_2, \cdots, p_n)\) of \(V\)
2. \(b \leftarrow \text{true}\)
3. for \(i \leftarrow 1\) to \(n - 1\)
 4. if \((p_i, p_{i+1}) \notin E\) then \(b \leftarrow \text{false}\)
5. if \((p_n, p_1) \notin E\) then \(b \leftarrow \text{false}\)
6. if \(b\) then return \((p_1, p_2, \cdots, p_n)\)
7. return “No Hamiltonian Cycle”

Running time = \(O(n! \times n)\)
Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:

\[3 \ 8 \ 10 \ 25 \ 29 \ 37 \ 38 \ 42 \ 46 \ 52 \ 59 \ 61 \ 63 \ 75 \ 79\]
$O(\lg n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

\[
\text{binary-search}(A, n, t)
\]

1. $i \leftarrow 1, j \leftarrow n$
2. while $i \leq j$ do
3. $k \leftarrow \lceil (i + j)/2 \rceil$
4. if $A[k] = t$ return true
5. if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false

Running time $= O(\lg n)$
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \(n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)

- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)

- \(\lg n < n^\sqrt{n} \)
- \(\lg n < n < n^\sqrt{n} \)
- \(\lg n < n < n^2 < n^\sqrt{n} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^\sqrt{n} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^\sqrt{n} < n! \)
- \(\lg n < n < n\ lg\ n < n^2 < n^\sqrt{n} < 2^n < n! \)
- \(\lg n < n < n\ lg\ n < n^2 < n^\sqrt{n} < 2^n < e^n < n! \)
- \(\lg n < n < n\ lg\ n = \lg(n!) < n^2 < n^\sqrt{n} < 2^n < e^n < n! \)
- \(\lg n < n < n\ lg\ n = \lg(n!) < n^2 < n^\sqrt{n} < 2^n < e^n < n! < n^n \)
Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k>0} \omega(n^k)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonable n, algorithm with lower order running time beats algorithm with higher order running time.