Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1. Syllabus

2. Introduction
   - What is an Algorithm?
   - Example: Insertion Sort
   - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions
Time and location:
- MoWeFr, 9:00-9:50am
- Alumni 97

Instructor:
- Shi Li, shil@buffalo.edu
- Office hours: TBD via poll

TA
- Alexander Stachnik, ajstachn@buffalo.edu
- Office hours: TBD via poll
You **should** already know:
You should already know:

- Mathematical Tools
  - Mathematical inductions
  - Probabilities and random variables
You should already know:

- **Mathematical Tools**
  - Mathematical inductions
  - Probabilities and random variables

- **Basic data Structures**
  - Stacks, queues, linked lists
You should already know:

- **Mathematical Tools**
  - Mathematical inductions
  - Probabilities and random variables

- **Basic data Structures**
  - Stacks, queues, linked lists

- **Some Programming Experience**
  - C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
  - Sorting
  - Shortest paths
  - Minimum spanning tree

- How to analyze algorithms
  - Correctness
  - Running time (efficiency)
  - Space requirement

- Meta techniques to design algorithms
  - Greedy algorithms
  - Divide and conquer
  - Dynamic programming
  - Linear Programming

- NP-completeness
You Will Learn

- Classic algorithms for classic problems
  - Sorting
  - Shortest paths
  - Minimum spanning tree

- How to analyze algorithms
  - Correctness
  - Running time (efficiency)
  - Space requirement
You Will Learn

- Classic algorithms for classic problems
  - Sorting
  - Shortest paths
  - Minimum spanning tree
- How to analyze algorithms
  - Correctness
  - Running time (efficiency)
  - Space requirement
- Meta techniques to design algorithms
  - Greedy algorithms
  - Divide and conquer
  - Dynamic programming
  - Linear Programming

NP-completeness
You Will Learn

- Classic algorithms for classic problems
  - Sorting
  - Shortest paths
  - Minimum spanning tree
- How to analyze algorithms
  - Correctness
  - Running time (efficiency)
  - Space requirement
- Meta techniques to design algorithms
  - Greedy algorithms
  - Divide and conquer
  - Dynamic programming
  - Linear Programming
- NP-completeness
## Tentative Schedule (42 Lectures)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lectures/Recitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Basic Graph Algorithms</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Divide and Conquer</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td></td>
<td>1 recitation for homeworks</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>Apr 7, 2019, Mon</td>
</tr>
<tr>
<td>NP-Completeness</td>
<td>6 lectures, 1 recitation</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>4 lectures</td>
</tr>
<tr>
<td></td>
<td>2 recitations for homeworks</td>
</tr>
<tr>
<td>Final review, Q&amp;A</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>May 15 2019, Wed, 8:00am-11:00am</td>
</tr>
</tbody>
</table>
Textbook (Highly Recommended):

- **Algorithm Design**, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

Reading Before Classes

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
- Slides and example problems for recitations will be posted online before class
15% for participation
- Quizzes given in a random chosen set of lectures.
- Each quiz contains 1 short-answer question.
- Submitting a solution gives 60% of the points for a quiz
- remaining 40% is given if the solution is correct.

35% for homeworks
- 5 homeworks, 3 of which have programming tasks

50% for mid-term + final exams, score for two exams is
\[
\max\{M \times 10\% + F \times 40\%, M \times 20\% + F \times 30\%\}
\]
\[M, F \in [0, 100]\]
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
  - Think about each problem for enough time before discussions
  - **Must write down solutions on your own, in your own words**
  - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
  - Can’t Google or ask questions online for solutions
  - Can’t read posted solutions from other algorithm course webpages
- Copy solutions from other students
For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs
Late Policy

- You have 1 “late credit”, using it allows you to turn in a homework late for three days
- With no special reasons, no other late submissions will be accepted
● Mid-Term and Final Exam will be closed-book

● Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
  ● “F” for the course
  ● may lose financial support
  ● case will be recorded in department and university databases
- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
  - “F” for the course
  - may lose financial support
  - case will be recorded in department and university databases

Questions?
Outline

1 Syllabus

2 Introduction
   • What is an Algorithm?
   • Example: Insertion Sort
   • Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational problem: specifies the input/output relationship.

- An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

**Input:** two integers $a, b > 0$

**Output:** the greatest common divisor of $a$ and $b$

---

*Example:*

Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

$$\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$$

$$\rightarrow (210, 60)$$

$$\rightarrow (60, 30)$$

$$\rightarrow (30, 0)$$
## Examples

### Greatest Common Divisor

**Input:** two integers $a, b > 0$

**Output:** the greatest common divisor of $a$ and $b$

### Example:

- **Input:** 210, 270
- **Output:** 30
Examples

Greatest Common Divisor

**Input:** two integers \( a, b > 0 \)

**Output:** the greatest common divisor of \( a \) and \( b \)

Example:

- Input: 210, 270
- Output: 30

- Algorithm: Euclidean algorithm
Examples

Greatest Common Divisor

**Input:** two integers \( a, b > 0 \)

**Output:** the greatest common divisor of \( a \) and \( b \)

Example:

- **Input:** 210, 270
- **Output:** 30

- Algorithm: Euclidean algorithm
- \( \text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60) \)
Examples

Greatest Common Divisor

**Input:** two integers $a, b > 0$

**Output:** the greatest common divisor of $a$ and $b$

Example:

- **Input:** 210, 270
- **Output:** 30

- Algorithm: Euclidean algorithm
  - $\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$
  - $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$
Examples

Sorting

**Input:** sequence of $n$ numbers $(a_1, a_2, \cdots, a_n)$

**Output:** a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$
### Sorting

**Input:** sequence of \( n \) numbers \((a_1, a_2, \cdots, a_n)\)

**Output:** a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

---

**Example:**

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Examples

**Sorting**

**Input:** sequence of \( n \) numbers \((a_1, a_2, \cdots, a_n)\)

**Output:** a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

**Example:**

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, \ldots
## Examples

### Shortest Path

**Input:** directed graph $G = (V, E)$, $s, t \in V$

**Output:** a shortest path from $s$ to $t$ in $G$
Examples

Shortest Path

**Input:** directed graph $G = (V, E)$, $s, t \in V$

**Output:** a shortest path from $s$ to $t$ in $G$
Examples

Shortest Path

**Input:** directed graph \( G = (V, E) \), \( s, t \in V \)

**Output:** a shortest path from \( s \) to \( t \) in \( G \)

Algorithm: Dijkstra's algorithm
Examples

Shortest Path

**Input:** directed graph \( G = (V, E) \), \( s, t \in V \)

**Output:** a shortest path from \( s \) to \( t \) in \( G \)

![Graph Diagram]

- **Algorithm:** Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, associated with a particular programming language
Pseudo-Code

**Euclidean** \((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \text{ mod } b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Main focus: correctness, running time (efficiency)
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g., GUI)
  - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g., GUI)
  - …

Why is it important to study the running time (efficiency) of an algorithm?
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g., GUI)
  - ...

Why is it important to study the running time (efficiency) of an algorithm?
1. feasible vs. infeasible
Main focus: correctness, running time (efficiency)

Sometimes: memory usage

Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g, GUI)
  - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g., GUI)
  - ...

Why is it important to study the running time (efficiency) of an algorithm?
1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
  - extensibility
  - modularity
  - object-oriented model
  - user-friendliness (e.g., GUI)
  - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1 Syllabus

2 Introduction
   - What is an Algorithm?
   - Example: Insertion Sort
   - Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Sorting Problem

**Input:** sequence of \( n \) numbers \((a_1, a_2, \cdots, a_n)\)

**Output:** a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
At the end of $j$-th iteration, make the first $j$ numbers sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

**insertion-sort(A, n)**

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
   5. \(A[i + 1] \leftarrow A[i]\)
   6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

**insertion-sort(A, n)**

1. for $j \leftarrow 2$ to $n$
2. $key \leftarrow A[j]$
3. $i \leftarrow j - 1$
4. while $i > 0$ and $A[i] > key$
5. $A[i + 1] \leftarrow A[i]$
6. $i \leftarrow i - 1$
7. $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 53 59 15

$↑$

$i$
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort($A, n$)

1. for $j ← 2$ to $n$
2. $key ← A[j]$
3. $i ← j − 1$
4. while $i > 0$ and $A[i] > key$
6. $i ← i − 1$
7. $A[i + 1] ← key$

- $j = 6$
- $key = 15$

12 21 35 53 59 59

↑
i
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

**insertion-sort**(A, n)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
5. \( A[i + 1] \leftarrow A[i] \)
6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow key \)

- \( j = 6 \)
- \( key = 15 \)

12 21 35 53 59 59

\( \uparrow \)
\( i \)
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

### insertion-sort($A, n$)

1. for $j \leftarrow 2$ to $n$
2. \hspace{1em} key $\leftarrow A[j]$
3. \hspace{1em} $i \leftarrow j - 1$
4. \hspace{1em} while $i > 0$ and $A[i] > key$
5. \hspace{2em} $A[i + 1] \leftarrow A[i]$
6. \hspace{2em} $i \leftarrow i - 1$
7. \hspace{1em} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 53 53 59

$\uparrow$

$i$
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

**insertion-sort**(A, n)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
   5. \( A[i + 1] \leftarrow A[i] \)
   6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow key \)

- \( j = 6 \)
- \( key = 15 \)

12 21 35 53 53 59

\[i\]
Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

**insertion-sort**($A$, $n$)

1. for $j \leftarrow 2$ to $n$
2. \hspace{1em} $key \leftarrow A[j]$
3. \hspace{1em} $i \leftarrow j - 1$
4. \hspace{1em} while $i > 0$ and $A[i] > key$
5. \hspace{2em} $A[i + 1] \leftarrow A[i]$
6. \hspace{2em} $i \leftarrow i - 1$
7. \hspace{1em} $A[i + 1] \leftarrow key$

- $j = 6$
- $key = 15$

12 21 35 35 53 59

\[ j \uparrow \]

\[ i \]
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

**insertion-sort**(A, n)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
5. \( A[i + 1] \leftarrow A[i] \)
6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow key \)

- \( j = 6 \)
- \( key = 15 \)

12 21 35 35 53 59

\( \uparrow \)

\( i \)
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

*insertion-sort*(A, n)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
   - \( A[i + 1] \leftarrow A[i] \)
   - \( i \leftarrow i - 1 \)
5. \( A[i + 1] \leftarrow key \)

- \( j = 6 \)
- \( key = 15 \)

12 21 21 35 53 59

↑

\( i \)
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

**insertion-sort**(A, n)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
5. \( A[i + 1] \leftarrow A[i] \)
6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow key \)

\( j = 6 \)
\( key = 15 \)

12 21 21 35 53 59
↑
i
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort\( (A, n) \)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( key \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > key \)
5. \( A[i + 1] \leftarrow A[i] \)
6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow key \)

- \( j = 6 \)
- \( key = 15 \)

12 15 21 35 53 59
↑
i
Outline

1. Syllabus

2. Introduction
   - What is an Algorithm?
   - Example: Insertion Sort
   - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Invariant: after iteration $j$ of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

- after $j = 1$: 53, 12, 35, 21, 59, 15
- after $j = 2$: 12, 53, 35, 21, 59, 15
- after $j = 3$: 12, 35, 53, 21, 59, 15
- after $j = 4$: 12, 21, 35, 53, 59, 15
- after $j = 5$: 12, 21, 35, 53, 59, 15
- after $j = 6$: 12, 15, 21, 35, 53, 59
Q: Size of input?
Q: Size of input?
A: Running time as function of size
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size: \# integers, total length of integers, \# vertices in graph, \# edges in graph
- Q: Which input?

Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any particular value.
Q: Size of input?
A: Running time as function of size
possible definition of size: \# integers, total length of integers, \# vertices in graph, \# edges in graph
Q: Which input?
A: Worst-case analysis:
- Worst running time over all input instances of a given size
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
  possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

- Q: Which input?
- A: Worst-case analysis:
  - Worst running time over all input instances of a given size

- Q: How fast is the computer?

Q: Size of input?
A: Running time as function of size
possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

Q: Which input?
A: Worst-case analysis:
  Worst running time over all input instances of a given size

Q: How fast is the computer?
Q: Programming language?
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

- Q: Which input?
- A: Worst-case analysis:
  - Worst running time over all input instances of a given size

- Q: How fast is the computer?
- Q: Programming language?

- A: Important idea: asymptotic analysis
  - Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant

\[ 3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3 \]
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant

\[ 3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3 \]
\[ 3n^3 + 2n^2 - 18n + 1028 = O(n^3) \]
\[ 2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3} \]
\[ 2^{n/3+100} + 100n^{100} = O(2^{n/3}) \]
Asymptotic Analysis: $O$-notation

- Ignoring lower order terms
- Ignoring leading constant

$O$-notation allows us to
- ignore architecture of computer
- ignore programming language
Asymptotic Analysis of Insertion Sort

**insertion-sort**(*A, n*)

1. for *j* ← 2 to *n*
2. 
   *key* ← *A*[*j*]
3. *i* ← *j* − 1
4. while *i* > 0 and *A*[i] > *key*
   5. 
      *A*[i + 1] ← *A*[i]
6. 
   *i* ← *i* − 1
7. 
   *A*[i + 1] ← *key*

Worst-case running time for iteration *j* in the outer loop?

Answer: \(O(j)\)

Total running time = \(\sum_{j=2}^{n} O(j) = O(n^2)\) (informal)
Asymptotic Analysis of Insertion Sort

insertion-sort\( (A, n) \)

1. for \( j \leftarrow 2 \) to \( n \)
2. \( \text{key} \leftarrow A[j] \)
3. \( i \leftarrow j - 1 \)
4. while \( i > 0 \) and \( A[i] > \text{key} \)
   5. \( A[i + 1] \leftarrow A[i] \)
   6. \( i \leftarrow i - 1 \)
7. \( A[i + 1] \leftarrow \text{key} \)

- Worst-case running time for iteration \( j \) in the outer loop?
Asymptotic Analysis of Insertion Sort

```
insertion-sort(A, n)
    1. for j ← 2 to n
    2.    key ← A[j]
    3.    i ← j - 1
    4.    while i > 0 and A[i] > key
    6.        i ← i - 1
    7.    A[i + 1] ← key
```

- Worst-case running time for iteration $j$ in the outer loop?
  Answer: $O(j)$
Asymptotic Analysis of Insertion Sort

**insertion-sort**(*A*, *n*)

1. for *j* ← 2 to *n*
2. \[\text{key} \leftarrow A[j]\]
3. \[i \leftarrow j - 1\]
4. while *i* > 0 and *A[i] > key*
5. \[A[i + 1] \leftarrow A[i]\]
6. \[i \leftarrow i - 1\]
7. \[A[i + 1] \leftarrow \text{key}\]

- Worst-case running time for iteration *j* in the outer loop?
  Answer: \(O(j)\)
- Total running time = \(\sum_{j=2}^{n} O(j) = O(n^2)\) (informal)

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough.

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough.

Precision of real numbers?

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers?
Try to avoid using real numbers in this course.

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers?
Try to avoid using real numbers in this course.

Can we do better than insertion sort asymptotically?

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers? Try to avoid using real numbers in this course.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort, heap sort, ...
Remember to sign up for Piazza.

Questions?
Outline

1. Syllabus

2. Introduction
   - What is an Algorithm?
   - Example: Insertion Sort
   - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Asymptotically Positive Functions

**Def.** \( f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \( \exists n_0 > 0 \) such that \( \forall n > n_0 \) we have \( f(n) > 0 \)

In other words, \( f(n) \) is positive for large enough \( n \).
Def. \( f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \( \exists n_0 > 0 \) such that \( \forall n > n_0 \) we have \( f(n) > 0 \)

- In other words, \( f(n) \) is positive for large enough \( n \).
Asymptotically Positive Functions

**Def.** \( f : \mathbb{N} \to \mathbb{R} \) is an asymptotically positive function if:

- \( \exists n_0 > 0 \) such that \( \forall n > n_0 \) we have \( f(n) > 0 \)

- In other words, \( f(n) \) is positive for large enough \( n \).

- \( n^2 - n - 30 \)
Def. \( f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \( \exists n_0 > 0 \) such that \( \forall n > n_0 \) we have \( f(n) > 0 \)

- In other words, \( f(n) \) is positive for large enough \( n \).

- \( n^2 - n - 30 \)  
  Yes
Asymptotically Positive Functions

**Def.** Let $f : \mathbb{N} \to \mathbb{R}$ be an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough $n$.

- $n^2 - n - 30$ \quad Yes
- $2^n - n^{20}$
Asymptotically Positive Functions

Def. \( f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \( \exists n_0 > 0 \) such that \( \forall n > n_0 \) we have \( f(n) > 0 \)

In other words, \( f(n) \) is positive for large enough \( n \).

- \( n^2 - n - 30 \) \hspace{1cm} Yes
- \( 2^n - n^{20} \) \hspace{1cm} Yes
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough $n$.

- $n^2 - n - 30$ Yes
- $2^n - n^{20}$ Yes
- $100n - n^2/10 + 50$ ?
Asymptotically Positive Functions

**Def.** $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough $n$.
- $n^2 - n - 30$\hspace{1cm} Yes
- $2^n - n^{20}$\hspace{1cm} Yes
- $100n - n^2/10 + 50$?\hspace{1cm} No
Asymptotically Positive Functions

**Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough $n$.

- $n^2 - n - 30$ \hspace{1cm} Yes
- $2^n - n^{20}$ \hspace{1cm} Yes
- $100n - n^2/10 + 50$? \hspace{1cm} No

We only consider asymptotically positive functions.
**O-Notation: Asymptotic Upper Bound**

**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$
**$O$-Notation: Asymptotic Upper Bound**

**$O$-Notation**  For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$. 
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$ 

In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$. 

![Graph of functions](image)
**O-Notation**  For a function \( g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. 
\]

- In other words, \( f(n) \in O(g(n)) \) if \( f(n) \leq cg(n) \) for some \( c \) and large enough \( n \).

- \( 3n^2 + 2n \in O(n^2 - 10n) \)
**O-Notation: Asymptotic Upper Bound**

**O-Notation** For a function \( g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. 
\]

- In other words, \( f(n) \in O(g(n)) \) if \( f(n) \leq cg(n) \) for some \( c \) and large enough \( n \).
- \( 3n^2 + 2n \in O(n^2 - 10n) \)

**Proof.**

Let \( c = 4 \) and \( n_0 = 10 \), for every \( n > n_0 = 50 \), we have,

\[
3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n) \\
= -n^2 + 40n \leq 0. \\
3n^2 + 2n \leq c(n^2 - 10n) 
\]
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$ 

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$.

- $3n^2 + 2n \in O(n^2 - 10n)$
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$  

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$ 

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

**Asymptotic Notations**

**Comparison Relations**

$\leq$
**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$ 

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some $c$ and large enough $n$.

- $3n^2 + 2n \in O(n^2 - 10n)$
- $3n^2 + 2n \in O(n^3 - 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^3 - 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
We use \( f(n) = O(g(n)) \) to denote \( f(n) \in O(g(n)) \)

- \( 3n^2 + 2n = O(n^3 - 10n) \)
- \( 3n^2 + 2n = O(n^2 + 5n) \)
- \( 3n^2 + 2n = O(n^2) \)

“\( = \)” is asymmetric! Following statements are wrong:
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^3 - 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

“$=$” is asymmetric! Following statements are wrong:

- $O(n^3 - 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
**Ω-Notation: Asymptotic Lower Bound**

**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$ 

**Ω-Notation**  For a function $g(n)$,

$$Ω(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$
**Ω-Notation: Asymptotic Lower Bound**

**O-Notation**  For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

**Ω-Notation**  For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in \Omega(g(n))$ if $f(n) \geq cg(n)$ for some $c$ and large enough $n$. 
\(\Omega\)-Notation: Asymptotic Lower Bound

\(\Omega\)-Notation For a function \(g(n)\),
\[
\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}. 
\]
Ω-Notation: Asymptotic Lower Bound

- Again, we use “=” instead of ∈.
  - \(4n^2 = \Omega(n - 10)\)
  - \(3n^2 - n + 10 = \Omega(n^2 - 20)\)
Again, we use “=” instead of $\in$.

- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$\mathcal{O}$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td></td>
</tr>
</tbody>
</table>
Again, we use “=” instead of $\in$.
- $4n^2 = \Omega(n - 10)$
- $3n^2 - n + 10 = \Omega(n^2 - 20)$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td></td>
</tr>
</tbody>
</table>

**Theorem** \( f(n) = O(g(n)) \iff g(n) = \Omega(f(n)). \)
\(\Theta\)-Notation: Asymptotic Tight Bound

**\(\Theta\)-Notation** For a function \(g(n)\),

\[
\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } 
\right. 
\]

\[
c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0
\]

\]
\( \Theta \)-Notation: Asymptotic Tight Bound

**\( \Theta \)-Notation**  For a function \( g(n) \),

\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

\[
f(n) = \Theta(g(n)), \text{ then for large enough } n, \text{ we have } f(n) \approx g(n).
\]
**Θ-Notation**: Asymptotic Tight Bound

**Θ-Notation** For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough $n$, we have "$f(n) \approx g(n)$".
Θ-Notation: Asymptotic Tight Bound

For a function \(g(n)\),

\[
\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\
\quad c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(3n^2 + 2n = \Theta(n^2 - 20n)\)
**Θ-Notation** For a function $g(n)$,
\[ \Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \]
\[ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \} \].

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$
**Θ-Notation: Asymptotic Tight Bound**

**Θ-Notation**  For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \}$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 - 20n)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
</tr>
</tbody>
</table>
**Θ-Notation: Asymptotic Tight Bound**

**Θ-Notation**  For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$  

- $3n^2 + 2n = \Theta(n^2 - 20n)$  
- $2^{n/3} + 100 = \Theta(2^{n/3})$  

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
</tr>
</tbody>
</table>

**Theorem**  $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.  

Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O, \Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th></th>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O$, $\Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>O</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lg_{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O, \Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lg^{10}n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Exercise**

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O$, $\Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\lg_{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O$, $\Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O$, $\Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions $f, g$ in the following table, indicate whether $f$ is $O, \Omega$ or $\Theta$ of $g$.

<table>
<thead>
<tr>
<th></th>
<th>$f$</th>
<th>$g$</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 - 100n$</td>
<td>$5n^2 + 3n$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$3n - 50$</td>
<td>$n^2 - 7n$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$2^n$</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{n}$</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>$O$</td>
<td>$\Omega$</td>
<td>$\Theta$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>$O$</td>
<td>$\Omega$</td>
<td>$\Theta$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Trivial Facts on Comparison Relations**

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$
### Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
</tr>
</tbody>
</table>

### Trivial Facts on Comparison Relations

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g \text{ and } f \geq g$
- $f \leq g \text{ or } f \geq g$

### Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>( O )</th>
<th>( \Omega )</th>
<th>( \Theta )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>( \leq )</td>
<td>( \geq )</td>
<td>( = )</td>
</tr>
</tbody>
</table>

**Trivial Facts on Comparison Relations**

- \( f \leq g \iff g \geq f \)
- \( f = g \iff f \leq g \) and \( f \geq g \)
- \( f \leq g \) or \( f \geq g \)

**Correct Analogies**

- \( f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \)
- \( f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \) and \( f(n) = \Omega(g(n)) \)

**Incorrect Analogy**

- \( f(n) = O(g(n)) \) or \( g(n) = O(f(n)) \)
Incorrect Analogy

- \( f(n) = O(g(n)) \) or \( g(n) = O(f(n)) \)
Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$

\[ f(n) = n^2 \]

\[ g(n) = \begin{cases} 
1 & \text{if } n \text{ is odd} \\
2^n & \text{if } n \text{ is even} 
\end{cases} \]
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, although weird.
Recall: informal way to define $O$-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \to 3n^2$
- ignoring leading constant: $3n^2 \to n^2$
- $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 - 10n - 5 = O(5n^2 - 6n + 5)$ is correct, although weird.
- $3n^2 - 10n - 5 = O(n^2)$ is simpler.
o-Notation  For a function $g(n)$,
$$o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

ω-Notation  For a function $g(n)$,
$$\omega(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

Example:
- $3n^2 + 5n + 10 = o(n^2 \lg n)$.
- $3n^2 + 5n + 10 = \omega(n^2 / \lg n)$. 

<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>$O$</th>
<th>$\Omega$</th>
<th>$\Theta$</th>
<th>$o$</th>
<th>$\omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
<td>$&lt;$</td>
<td>$&gt;$</td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>$O$</td>
<td>$\Omega$</td>
<td>$\Theta$</td>
<td>$o$</td>
<td>$\omega$</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>$\leq$</td>
<td>$\geq$</td>
<td>$=$</td>
<td>$&lt;$</td>
<td>$&gt;$</td>
</tr>
</tbody>
</table>

Questions?
Outline

1. Syllabus

2. Introduction
   - What is an Algorithm?
   - Example: Insertion Sort
   - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Computing the sum of $n$ numbers

```
sum(A, n)

1. $S \leftarrow 0$
2. for $i \leftarrow 1$ to $n$
3. 
4. return $S$
```
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
```

Merge two sorted arrays

\[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & 3
\end{array}\]
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
3
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
3 5
Merge two sorted arrays
Merge two sorted arrays

\[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 \\
\end{array}\]
Merge two sorted arrays

\[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7
\end{array}\]
Merge two sorted arrays
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 
\end{array}
\]
Merge two sorted arrays

\[ \begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array} \]
Merge two sorted arrays

\[\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}\]
merge($B, C, n_1, n_2$)  \\  $B$ and $C$ are sorted, with length $n_1$ and $n_2$

1. $A \leftarrow []$; $i \leftarrow 1$; $j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3.     if ($B[i] \leq C[j]$) then
4.         append $B[i]$ to $A$; $i \leftarrow i + 1$
5.     else
6.         append $C[j]$ to $A$; $j \leftarrow j + 1$
7. if $i \leq n_1$ then append $B[i..n_1]$ to $A$
8. if $j \leq n_2$ then append $C[j..n_2]$ to $A$
9. return $A$

$O(n)$ (Linear) Running Time

Running time = $O(n)$ where $n = n_1 + n_2$. 
merge($B, C, n_1, n_2$) \ \ B and C are sorted, with length $n_1$ and $n_2$

1. $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3. \quad if ($B[i] \leq C[j]$) then
4. \quad \quad append $B[i]$ to $A$; $i \leftarrow i + 1$
5. \quad else
6. \quad \quad append $C[j]$ to $A$; $j \leftarrow j + 1$
7. \quad if $i \leq n_1$ then append $B[i..n_1]$ to $A$
8. \quad if $j \leq n_2$ then append $C[j..n_2]$ to $A$
9. return $A$

Running time = $O(n)$ where $n = n_1 + n_2$. 
merge-sort\((A, n)\)

1. if \(n = 1\) then
2. return \(A\)
3. else
4. \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)\)
5. \(C \leftarrow \text{merge-sort}\left(A[\lfloor n/2\rfloor + 1..n], n - \lfloor n/2\rfloor\right)\)
6. return \(\text{merge}(B, C, \lfloor n/2\rfloor, n - \lfloor n/2\rfloor)\)
Merge-Sort

- $O(n \log n)$ Running Time

Each level takes running time $O(n)$.

There are $O(\log n)$ levels.

Running time = $O(n \log n)$.
**O(n \lg n) Running Time**

- **Merge-Sort**

  - Each level takes running time \(O(n)\)

```text
A[1..8]


```
\( O(n \lg n) \) Running Time

- Merge-Sort

Each level takes running time \( O(n) \)

There are \( O(\lg n) \) levels
$O(n \lg n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest
Closest Pair

**Input:** $n$ points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

**Output:** the pair of points that are closest

```python
closest-pair(x, y, n)
1  bestd ← ∞
2  for i ← 1 to n − 1
3      for j ← i + 1 to n
4          d ← \sqrt{(x[i] − x[j])^2 + (y[i] − y[j])^2}
5          if d < bestd then
6              besti ← i, bestj ← j, bestd ← d
7  return (besti, bestj)
```
Closest Pair

Input: \( n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

closest-pair(\(x, y, n\))

1. \( bestd \leftarrow \infty \)
2. for \( i \leftarrow 1 \) to \( n - 1 \)
3. for \( j \leftarrow i + 1 \) to \( n \)
4. \( d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2} \)
5. if \( d < bestd \) then
6. \( besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d \)
7. return \((besti, bestj)\)

Closest pair can be solved in \( O(n \lg n) \) time!
Multiply two matrices of size $n \times n$

matrix-multiplication($A, B, n$)

1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to $n$
3.     for $j \leftarrow 1$ to $n$
4.         for $k \leftarrow 1$ to $n$
5.             $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return $C$
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$. 
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$. 
**Def.** An **independent set** of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$. 

$O(n^k)$ Running Time for Integer $k \geq 4$
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size $k$

**Input:** graph $G = (V, E)$

**Output:** whether there is an independent set of size $k$
$O(n^k)$ Running Time for Integer $k \geq 4$

**Independent Set of Size $k$**

**Input:** graph $G = (V, E)$

**Output:** whether there is an independent set of size $k$

**independent-set($G = (V, E)$)**

1. for every set $S \subseteq V$ of size $k$
2. $b \leftarrow$ true
3. for every $u, v \in S$
4. if $(u, v) \in E$ then $b \leftarrow$ false
5. if $b$ return true
6. return false

Running time = $O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume $k$ is a constant)
Beyond Polynomial Time: $O(2^n)$

**Maximum Independent Set Problem**

**Input:** graph $G = (V, E)$

**Output:** the maximum independent set of $G$

```
max-independent-set(G = (V, E))
```

1. $R \leftarrow \emptyset$
2. for every set $S \subseteq V$
3.     $b \leftarrow \text{true}$
4.     for every $u, v \in S$
5.          if $(u, v) \in E$ then $b \leftarrow \text{false}$
6.          if $b$ and $|S| > |R|$ then $R \leftarrow S$
7. return $R$

Running time = $O(2^n n^2)$. 
Hamiltonian Cycle Problem

**Input:** a graph with $n$ vertices

**Output:** a cycle that visits each node exactly once, or say no such cycle exists.
Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

**Input:** a graph with $n$ vertices

**Output:** a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

**Hamiltonian**($G = (V, E)$)

1. for every permutation $(p_1, p_2, \cdots, p_n)$ of $V$
2. $b \leftarrow \text{true}$
3. for $i \leftarrow 1$ to $n - 1$
4. if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow \text{false}$
5. if $(p_n, p_1) \notin E$ then $b \leftarrow \text{false}$
6. if $b$ then return $(p_1, p_2, \cdots, p_n)$
7. return “No Hamiltonian Cycle”

Running time = $O(n! \times n)$
$O(\lg n)$ (Logarithmic) Running Time

Binary search

Input: sorted array $A$ of size $n$, an integer $t$;

Output: whether $t$ appears in $A$.

E.g., search 35 in the following array:
Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$. 

E.g., search 35 in the following array:
Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>75</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>
**Binary search**

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>75</td>
<td>79</td>
</tr>
</tbody>
</table>
Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:
Binary search

- Input: sorted array \( A \) of size \( n \), an integer \( t \);
- Output: whether \( t \) appears in \( A \).

E.g., search 35 in the following array:
- Binary search
  - Input: sorted array $A$ of size $n$, an integer $t$;
  - Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:

```
  3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```

$O(\log n)$ (Logarithmic) Running Time
$O(\log n)$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array $A$ of size $n$, an integer $t$;
  - Output: whether $t$ appears in $A$.
- E.g, search 35 in the following array:
Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:
Binary search

- Input: sorted array \( A \) of size \( n \), an integer \( t \);
- Output: whether \( t \) appears in \( A \).

E.g, search 35 in the following array:
Binary search
- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:
**Binary search**

- Input: sorted array \( A \) of size \( n \), an integer \( t \);
- Output: whether \( t \) appears in \( A \).

E.g, search 35 in the following array:

\[
\begin{array}{ccccccccccccccc}
3 & 8 & 10 & 25 & 29 & 37 & 38 & 42 & 46 & 52 & 59 & 61 & 63 & 75 & 79 \\
\end{array}
\]

- \( 37 > 35 \)
Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

E.g, search 35 in the following array:
**O(lg n) (Logarithmic) Running Time**

Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

```plaintext
binary-search(A, n, t)
  1. $i \leftarrow 1$, $j \leftarrow n$
  2. while $i \leq j$ do
  3.   $k \leftarrow \lfloor (i + j)/2 \rfloor$
  4.   if $A[k] = t$ return true
  5.   if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
  6. return false
```
Binary search

- Input: sorted array $A$ of size $n$, an integer $t$;
- Output: whether $t$ appears in $A$.

```
binary-search(A, n, t)
1  i ← 1, j ← n
2  while $i \leq j$ do
3      $k \leftarrow \lfloor (i + j)/2 \rfloor$
4      if $A[k] = t$ return true
5      if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6  return false
```

Running time $= O(lg\ n)$
Compare the Orders

- Sort the functions from smallest to largest asymptotically
  \( n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \( n^{\sqrt{n}} \), \( \lg n \), \( n \), \( n^2 \), \( n \lg n \), \( n! \), \( 2^n \), \( e^n \), \( \lg(n!) \), \( n^n \)
- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \)!
- \( \lg n < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \( n^{\sqrt{n}}, \ lg \ n, \ n, \ n^2, \ n \lg n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)

- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \)!

- \( \lg n < n^{\sqrt{n}} \)

- \( \lg n < n < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \[ n^{\sqrt{n}}, \, \lg n, \, n, \, n^2, \, n \lg n, \, n!, \, 2^n, \, e^n, \, \lg(n!), \, n^n \]

- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \).

- \( \lg n < n^{\sqrt{n}} \)

- \( \lg n < n < n^{\sqrt{n}} \)

- \( \lg n < n < n^2 < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \( n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n \ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)
- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \)!
- \( lg\ n < n^{\sqrt{n}} \)
- \( lg\ n < n < n^{\sqrt{n}} \)
- \( lg\ n < n < n^2 < n^{\sqrt{n}} \)
- \( lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n\]
- \(f < g\) stands for \(f = o(g)\), \(f = g\) stands for \(f = \Theta(g)\)
- \(\lg n < n^{\sqrt{n}}\)
- \(\lg n < n < n^{\sqrt{n}}\)
- \(\lg n < n < n^2 < n^{\sqrt{n}}\)
- \(\lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}}\)
- \(\lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < n!\)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
  \[ n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n \lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]

- \[ f < g \] stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \).
- \( \lg n < n^{\sqrt{n}} \)
- \( \lg n < n < n^{\sqrt{n}} \)
- \( \lg n < n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \lg n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n! \)
- \( \lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
  \( n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)

- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \)

- \( \lg n < n^{\sqrt{n}} \)
- \( \lg n < n < n^{\sqrt{n}} \)
- \( \lg n < n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < n! \)
- \( \lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \( \lg n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
  \( n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)
- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \)
- \( \lg n < n^{\sqrt{n}} \)
- \( \lg n < n < n^{\sqrt{n}} \)
- \( \lg n < n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < n! \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
- \( \lg n < n < n \ lg \ n = \ lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
Comparing the Orders

- Sort the functions from smallest to largest asymptotically:
  \[ n^{\sqrt{n}}, \ lg \ n, \ n, \ n^2, \ n \ lg \ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]

- \( f < g \) stands for \( f = o(g) \), \( f = g \) stands for \( f = \Theta(g) \).

- \( \lg n < n < n^{\sqrt{n}} \)
- \( \lg n < n < n^{\sqrt{n}} \)
- \( \lg n < n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < n! \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \( \lg n < n < n \ lg \ n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
- \( \lg n < n < n \ lg \ n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! < n^n \)
Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant $k$
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant $k$
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k > 0} \omega(n^k)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonable $n$, algorithm with lower order running time beats algorithm with higher order running time.