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1.1 Introduction

Please see the course webpage www.cse.buffalo.edu/~shil/courses/CSE632 regarding the ad-
ministrative information of the course.

In the CSE431/531 course, we have learned the complexity class P and NP and the notion
of NP-completeness and NP-hardness. Unfortunately, many natural problems are NP-hard. If
P 6= NP, then for these problems, we can not find an algorithm that

1. in polynomial time (as we argued in the definition of P, we shall say an algorithm is efficient
if it runs in polynomial time),

2. finds optimum solution,

3. for any instance.

Thus, one of the three requirements have to be relaxed when we handle a NP-hard problem.
This leads to three different categories of approaches to handle NP-hard problems.

1. Relaxing requirement 3: for any instance. An analysis showing an algorithm works
for any instance is called “worst-case analysis”. To relax a worst-case analysis, we can study
special cases of the problems for which efficient algorithms exist. However this often requires
the cases studied to be very special and thus too restricted. If a special case is also NP-hard,
and we are applying the worst-case analysis within this special case, then this does not lead
to a new approach to handle NP-hard problems.

Another approach of this type is to consider “random inputs”: we assume the input instance
comes from some distribution and we only require the algorithm works for most of the in-
stances in this distribution. Recently many problems have been studied using approach.
However, it is often not known what the right distribution for input instances is. For many
problems, assuming that the distribution is the uniform distribution over all input instances
is not realistic and makes the problems easy to solve.

2. Remove requirement 1: algorithm is efficient. In this category, we need to find algo-
rithms that find optimum solutions for all instances, but not necessarily in polynomial time.
This approach has been taken by those in the field of operations research who solve integer
programming formulations of optimization problems (this has lead to many generic techniques
for solving IP such as cutting-plane generation and branch-and-bound), or those in the area
of artificial intelligence who use A∗-search to explore the full set of solutions in a clever way.

Fast exponential time algorithms have been studied in the field of theoretical computer science.
In this approach, we are trying to find faster and faster algorithms for solving NP-hard
problems, even though the algorithms run in exponential time. For example, one may try
to improve the running time from 2O(n) to 2O(

√
n), or 2O(n1/3). Even within the 2O(n) range,
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a 1.5n-time algorithm is much faster than a 2n-time algorithm. For example, the trivial
algorithm for 3SAT runs in time 2npoly(n), and the current best randomized algorithm for
3SAT runs in expected time 1.321npoly(n).

3. Remove requirement 2: finds optimum solutions. This is by far the most common
approach. Our goal is to find efficient algorithms that find solutions that are good enough
for all instances. There has been an enormous study of various types of heuristics and meta-
heuristics such as simulated annealing, genetic algorithms, and tabu search. These techniques
often yield good results in practice.

The focus of this course is the “approximation algorithm” framework for optimization prob-
lems, whose goal is to find a solution that minimize or maximize an objective function. We
try to find a solution that closely approximates the optimal solution in terms of its objective
value. How well an approximation algorithm performs is measured by its approximation ratio.

Definition 1.1 An α-approximation algorithm for an optimization problem is a polynomial- time
algorithm that for all instances of the problem produces a solution whose value is within a factor of
α of the value of an optimal solution.

For minimization problems, the approximation ratio α is always at least 1: an algorithm is an
α-approximation algorithm if it finds a solution whose cost is at most α times the optimal cost. For
maximization problems, we shall use the convention that the approximation ratio α is at most 1:
an algorithm is α-approximation algorithm if it finds a solution whose value is at least α times the
optimal value. Sometimes, the approximation ratio of an algorithm for a maximization problem is
defined as value(optimum solution)

value(solution we found) , which is at least 1; however, we shall not use this definition in the
course.

Why do we study approximation algorithms?

• Because we need to solve NP-hard optimization problems. Approximation algorithms will
provide useful insights for designing heuristics to solve practical problems.

• It provides a method to measure the levels of difficulty of various NP-hard problems.

• The worst case analysis is robust: it gives guaranteed quality for all scenarios.

• The notion of approximation appears everywhere in many other areas (linear and sub-linear
time algorithms, streaming and online algorithms, property testing and probabilistic learning
methods), and the techniques developed in studying approximation algorithms can be applied
to these areas.

• It is fun since many of the ideas in designing approximation algorithms are mathematically
elegant.

However, there are also some disadvantages when one tries to apply approximation algorithms
directly to practical problems:

• The framework only applies to optimization problems with specified objectives. It does not
applied to, for example, decision problems, and problems without objective functions (some
problems from machine learning are of this type).

• Though the worst case analysis is robust, sometimes it is too pessimistic. The worst approxi-
mation ratio may come from some pathological cases that rarely happen in practice. Focusing
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on such cases may ignore algorithms that perform well for practical instances.

• There is often no smooth tradeoff between running time of algorithms and the guaranteed
approximation ratios. For most problems, we can guarantee some α-approximation ratio
with a polynomial time algorithm, but to improve the α-approximation ratio, we need to use
exponential time algorithms.

• It is often limited to clean problems. To apply the framework to practical problems, one need
to remove many side constraints and identify the hard cores of these problems.


