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Suppose 10000 coin tosses are performed. We want to estimate the probability of the event that the
number of total head-ups is no less than 6000. Normal distribution can be used to help estimation
this probability under the circumstances that each coin toss is fair. But what if the coins are not
fairly distributed and we only know the expectation of the total head-ups? This is where Chernoff
bounds can help. The scenario might seem artificial here but such setting occurs a lot in the analysis
of approximation algorithm.

10.1 Chernoff Bounds

Theorem 10.1. Let X1, X2, · · · , Xn be independent random {0, 1}-variables (not necessarily
identically distributed). Let X =

∑n
i=1Xi, µ = E[X]

Then ∀δ > 0

Pr[X ≥ (1 + δ)µ] <
( eδ

(1 + δ)1+δ

)µ
(10.1)

Pr[X ≤ (1− δ)µ] <
( eδ

(1− δ)1−δ
)µ

(10.2)

Remark. To get a rough idea how big is the value on the right hand side of equation 10.1, we
can take natural logarithm from both the numerator and denominator, which becomes δ and (1 +
δ) ln 1 + δ, respectively. Thus when δ is close to 0, r.h.s of equation 10.1 becomes

exp
(

(δ − (1 + δ)(δ − δ2/2 + · · · ))µ
)
≈ e−

δ2

2
µ

Thus if n is large enough, µ will also be large and the probability of X deviate from its expectation
by a multiplicative factor of 1 + δ becomes exponentially small.

We can apply this result to the scenario we introduced in the beginning of this lecture. In that
setting, suppose the coins are fair, then n = 10000, µ = 5000, δ = 0.2. Each toss is independent
from the others so we can apply Chernoff Bounds:

Pr[≥ 6000 head-ups] < e−
δ2

2
µ = e−0.22/2·5000 = e−100 = 3.72 · 10−44

which I will safely put it as “impossible to happen”. The analysis and result is exactly the same if
we assume coins are not fair but the 10000 coin tosses has expectation of 5000 head-ups.
In the following two sections we will show another two commonly used concentration inequalities
and their proofs and we will compare their preconditions and bounds.

10.1.1 Markov’s inequality

Theorem 10.2. Let X be a random variable taking non-negative values. µ = E[X]. Then ∀a ≤ 1,
Pr[X ≥ aµ] ≤ 1

a .

Proof: It’s a one-line proof. µ = E[X] ≥ aµ · Pr[X ≥ aµ]. Thus Pr[X ≥ aµ] ≤ 1
a
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10.1.2 Chebyshev’s inequality

Theorem 10.3. Let X be a random variable, µ = E[X], δ2 = Var[X]. Then ∀a ≤ 1, Pr[|X − µ| ≤
aδ] ≤ 1

a2
.

Proof: By definition Var[X] = E(|X − µ|2) = δ2. Then apply Markov’s inequality on the positive
random variable |X − µ|2 we’ll get Pr[|X − µ| ≤ aδ] = Pr[|X − µ|2 ≤ a2δ2] ≤ 1

a2
.

10.1.3 Comments

Chernoff bound is a “stronger” result than Markov’s inequality and Chebyshev’s inequality in the
sense that the probability of “bad events” can be exponentially small. The precondition is that the
random variable we bound is a summation of independent bounded variables, while in the Markov’s
inequality and Chebyshev’s inequality we don’t assume anything about the random variable X other
than positiveness or bounded variance. It is worth to note that independence must be assumed
here to make the bound holds.

10.1.4 Proof of Chernoff’s Bound

Let t be a real number. Let pi = Pr[Xi = 1]

E[etX ] = E[
n∏
i=1

etXi ]

=
n∏
i=1

E[etXi ] by independency

=
n∏
i=1

[(1− pi)) · 1 + pi · et]

=
n∏
i=1

[1 + pi(e
t − 1)]

≤
n∏
i=1

epi(e
t−1) because 1 + x ≤ ex

= eµ(e
t−1)

By Markov’s Inequality, if t > 0

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ] ≤ E[etX ]

et(1+δ)µ
≤ eµ(e

t−1)

et(1+δ)µ
(10.3)

Choose t = ln (1 + δ) (not optimal, but good enough). Then the r.h.s of equation 10.3 becomes(
eδ

(1+δ)(1+δ)

)µ
.

Equation 10.2 can be proved in a symmetric way.
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10.1.5 General Form

Theorem 10.4. Let X1, X2, · · · , Xn be independent random {0, 1}-variables. Let X =
∑n

i=1Xi,
µ = E[X]
Then ∀U ≥ µ, ∀L ≤ µ ∀δ > 0

Pr[X ≥ (1 + δ)U ] <
( eδ

(1 + δ)1+δ

)U
(10.4)

Pr[X ≤ (1− δ)L] <
( eδ

(1− δ)1−δ
)L

(10.5)

(10.6)

Proof: The proof in section 10.1.4 can be directly applied here:

Pr[X ≥ (1 + δ)U ] = Pr[etX ≥ et(1+δ)U ] ≤ E[etX ]

et(1+δ)U
≤ eµ(e

t−1)

et(1+δ)U
≤ eU(et−1)

et(1+δ)U

The rest of the proof follows.

Lemma 10.5. If δ ∈ (0, 1), then

eδ

(1 + δ)1+δ
≤ e−

δ2

3

e−δ

(1− δ)1−δ
≤ e−

δ2

2

Proof: Omitted.


