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11.1 Discrepency problem

Given n subsets S1, S2, · · · , Sn of n. The goal is to find a coloring χ : [n] → {−1, 1} so as to
minimize maxi∈[n] |

∑
j∈Si χj |. Here |

∑
j∈Si χj | is also referred to as the discrepancy of Si, denoted

as disc(Si). We don’t have such algorithm but we can provide an upper bound using Chernoff
bounds technique:

Theorem 11.1. There exists a coloring χ with maximum discrepancy d = O(
√
n lg n)

Proof: Let xj be a {0, 1}-random variable indicate whether we color the element j by −1 or 1.
We choose xj independently and identically distributed:

xj =

{
0 with probability 1/2

1 with probability 1/2

We are going to show that with constant probability the discrepancy of such random coloring will
be of O(

√
n lnn).

Fix a subset Si, since xj = (χj + 1)/2, disc(Si) can be written as
∑

j∈Si xj − |Si|/2. We can use
Chernoff bounds now for

∑
j∈Si xj since µ = E[

∑
j∈Si xj ] = |Si|/2 and each xj is independently

chosen. Let δ = d
|Si| :

Pr[
∑
j∈Si

xj ≥
|Si|
2

+
d

2
] = Pr[

∑
j∈Si

xj ≥
|Si|
2

(1 +
d

|Si|
)] ≤

( eδ

(1 + δ)1+δ

)µ
≤ e−

δ2

3
·µ ≤ e−

δ2|Si|
6

if we let d =
√

6n ln 3n, then δ =
√

6n ln 3n
|Si|2 ≥

√
6 ln 3n
|Si| . We’ll have

Pr[
∑
j∈Si

xj ≥
|Si|
2

+
d

2
] ≤ e−

δ2|Si|
6 ≤ 1

3n
(11.1)

Similar analysis can show:

Pr[
∑
j∈Si

(1− xj) ≥
|Si|
2

+
d

2
] ≤ 1

3n
(11.2)

The probability of no such bad events for any i ∈ [n] can be bounded using union bound:

Pr[∀i, scenarios in equation 11.1 and 11.2 does not happen] ≥ 1− 2n · 1

3n
=

1

3

This is the same as saying:

Pr[χ is a coloring with max discrepency d] ≥ 1

3

Since the probability space is finite, constant probability implies existence.
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11.1.1 Congesiton Minimization

Given a graph G = (V,E), k source-sink pairs (s1, t1), (s2, t2), · · · , (sk, tk). The goal is to choose a
path pi from si to ti for each i ∈ [k], so as to minimize

max
e∈E
|{i ∈ [k]} : e ∈ pi|

The problem can be expressed as an exponential-sized Integer Programming(IP) problem as follows
(but we will keep in mind that this IP is equivalent to a polynomial-sized IP, as we will show in
Homework 2):
For each i ∈ [k], define Pi be the set of all paths from si to ti. Define P =

⋃
i∈[k] Pi. Then for each

i ∈ [k], for every p ∈ Pi, we use xp ∈ {0, 1} to indicate whether we use the path p to satisfy the
demand pair (si, ti) in our final solution. The IP is:

min C s.t.∑
p∈Pi

xp = 1 ∀i ∈ [k]

∑
p∈P,p3e

xp ≤ C ∀e ∈ E

xp ∈ {0, 1} ∀p ∈ P

The relaxed LP can have xp ≥ 0 for the last constraint. Now the algorithm is:
(1). Solve LP to obtain the set of {xp}p∈P values.
(2). Rounding: For each i ∈ [k], independently choose a path pi ∈ Pi follows the distribution given
by LP, i.e.. Pr[pi = p] = xp
(3). Rounding: Let

x̃p =

{
0 if p is not selected by (2)

1 if p is selected by (2)

Fix an e ∈ E, now we want to bound Pr[
∑

p∈P,p3e x̃p ≥ (1 + δ)C] for some δ we will choose later.
Notice that {x̃p}p∈Pi are definitely dependent. But such dependency won’t hurt here. In fact, let
yi,e =

∑
p∈Pi,p3e x̃p, then {yi,e}i∈[k] is independent. And we have E[

∑
i∈[k] yi,e] = E[

∑
p∈P,p3e x̃p] =∑

p∈P,p3e xp ≤ C. Then:

Pr[
∑

p∈P,p3e
x̃p ≥ (1 + δ)C] = Pr[

∑
i∈[k]

yi,e ≥ (1 + δ)C] ≤
( eδ

(1 + δ)1+δ

)C
≤ eδ

(1 + δ)1+δ

since C is at least 1 in order to make the problem meaningful.
To use the union bound for every edge, δ should be selected as small as possible but satisfy

eδ

(1 + δ)1+δ
≤ 1

2n2

or
δ − (1 + δ) ln (1 + δ) ≤ − ln 2n2

The equality holds if we let δ = Θ(lnn/ ln lnn).
Therefore, by union bound, Pr[{x̃p} has congestion at most (1 + δ)C] ≥ 1

2 for such δ. Put it in

another way, there exist an O( lnn
ln lnn)-approximation for congestion minimization problem.


