CSE 632: Analysis of Algorithms II Fall 2017

Lecture 11 (10/06/2017): Discrepency, Congestion minimization
Lecturer: Shi Li Scribe: Jiayi Xian

11.1 Discrepency problem

Given n subsets Si,S2,---,S, of n. The goal is to find a coloring x : [n] — {—1,1} so as to
minimize max;e(n) | > es, Xj|- Here |32 cq. x| 18 also referred to as the discrepancy of S, denoted
as disc(S;). We don’t have such algorithm but we can provide an upper bound using Chernoff
bounds technique:

Theorem 11.1. There exists a coloring x with maximum discrepancy d = O(y/nlgn)
Proof: Let z; be a {0,1}-random variable indicate whether we color the element j by —1 or 1.
We choose z; independently and identically distributed:
0 with probability 1/2
T =
! 1 with probability 1/2

We are going to show that with constant probability the discrepancy of such random coloring will
be of O(vnlnn).

Fix a subset S;, since z; = (x; +1)/2, disc(S;) can be written as ;¢ x; — [5i]/2. We can use
Chernoff bounds now for ;¢ z; since p = E[ ;¢ ;] = |S;[/2 and each z; is independently

chosen. Let § = |g‘:

Si|d
Pr[z xj > ’22‘ + 5] = Pr[z xj >
JES; JES;

if we let d = v/6nln3n, then § = \/67@“';5” > \/6llg?i”. We’ll have
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Similar analysis can show:
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The probability of no such bad events for any i € [n] can be bounded using union bound:

1 1
Pr[Vi, scenarios in equation 11.1 and 11.2 does not happen] > 1 — 2n - 3.3
n

This is the same as saying:

W =

Pr[x is a coloring with max discrepency d] >

Since the probability space is finite, constant probability implies existence. [ |
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11.1.1 Congesiton Minimization

Given a graph G = (V, E), k source-sink pairs (s1,t1), (s2,t2), -, (Sk, tx). The goal is to choose a
path p; from s; to t; for each i € [k], so as to minimize

max |{i € [K]} : e € pi

The problem can be expressed as an exponential-sized Integer Programming(IP) problem as follows
(but we will keep in mind that this IP is equivalent to a polynomial-sized IP, as we will show in
Homework 2):

For each i € [k], define P; be the set of all paths from s; to ¢;. Define P = Uie[k] P;. Then for each
i € [k], for every p € P;, we use z, € {0,1} to indicate whether we use the path p to satisfy the
demand pair (s;,t;) in our final solution. The IP is:

min C s.t.
Z xzp=1 Vi € [k]
pEP;
Z x, <C Veec F
pEP,poe
zp € {0,1} Vpe P

The relaxed LP can have x, > 0 for the last constraint. Now the algorithm is:
(1). Solve LP to obtain the set of {x)},cp values.
(2). Rounding: For each i € [k], independently choose a path p; € P; follows the distribution given
by LP, i.e.. Prlp; =p| =1z,
(3). Rounding: Let
~_J0 if pis not selected by (2)
= 1 if p is selected by (2)

Fix an e € E, now we want to bound Pr[}_ cp 5. Zp > (14 0)C] for some ¢ we will choose later.
Notice that {Z)},cp, are definitely dependent. But such dependency won’t hurt here. In fact, let

Yie = ZpGPi,pae Zp, then {yi,e}ie[k} is independent. And we have E[Zie[k] Yie] = E[ZpeP,pae Tp) =

peppse Tp < C. Then:
é C é
€ €
Pl 3 T 00 =Pl (001 < (5m) = G

since C' is at least 1 in order to make the problem meaningful.
To use the union bound for every edge, ¢ should be selected as small as possible but satisfy

el < 1
(1406)1+0 = 2p2
or
§—(1+0)In(1+6) < —In2n?

The equality holds if we let 6 = ©(Inn/Inlnn).
Therefore, by union bound, Pr[{Z,} has congestion at most (1 + §)C] > % for such §. Put it in

Inn
Inlnn

another way, there exist an O( )-approximation for congestion minimization problem.



