
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 2 (09/01/2017): Approximation Algorithm for k-Center

Lecturer: Shi Li Scribe: Shi Li

2.1 2-Approximation Algorithm for k-Center

In this section, we consider the k-center problem. In the problem, we are given a finite (symmetric)
metric space (X, d)1, and an integer k ≥ 1, the goal of the problem is to find a set C ⊆ X of size
at most k so as to minimize

cost(C) := max
u∈X

min
c∈C

d(u, c).

That is, we select at most k centers C and connect every point u ∈ X to its nearest center
c ∈ C and its connection cost the distance d(u, c); the goal is to minimize the maximum connection
cost over all points u ∈ X. One application of the problem is clustering: we are given a set X of
points that come from k hidden clusters and the goal is to recover the k clusters. We can solve
the k-center problem and the k centers as well as the connections of points to the k centers will
give the k clusters. Another application is the placement of fire stations (or some other facilities)
in a city. We are given a map of buildings in the city and we need to build k fire stations while
minimizing the maximum distance between a building and its nearest fire station.

We now consider a simpler task: assume we are give an upper bound L on the cost of the optimal
solution C∗ (which is, of course, not known to the algorithm). Our goal is to find a solution C ⊆ X,
|C| ≤ k, such that cost(C) ≤ 2L. We can use the following greedy algorithm to solve this task:

Algorithm 1 check(L)

1: Let S ← X,C ← ∅
2: for i← 1 to k do
3: let u← arbitrary vertex in S
4: let C ← C ∪ {u}, S ← S \ {v ∈ S : d(u, v) ≤ 2L}
5: if S = ∅ then return C

6: declare failure

Observation 2.1 If check(L) returns a set C, then C is a valid solution with cost(C) ≤ 2L.

This holds since every time we add a center u to C, we only remove points whose distance is
at most 2L to u from S, and we added at most k centers to C. If S becomes empty, then we have
cost(C) ≤ 2L.

The important lemma we need to prove is

Lemma 2.2 If L ≥ cost(C∗), then the algorithm will always return a set C.

1Recall that in a metric space (X, d), X is a set of points, d : X ×X → R≥0 is a function such that d(u, u) = 0
for every u ∈ X, d(u, v) = d(v, u) for every u, v ∈ X and d(u,w) ≤ d(u, v) + d(v, w) for every u, v, w ∈ X.

2-1

2-2 Lecture 2: Approximation Algorithm for k-Center

Proof: Let C∗ = {c1, c2, · · · , ck} and let Bj = {u ∈ X : d(u,Cj) ≤ L} be the set of points whose

distance to the center cj is at most L. Thus, we have
⋃k

j=1Bj = X.
Intuitively, if we focus on the set of balls in {B1, B2, · · · , Bk} that are completely removed

from S in check(L), then in each iteration the cardinality of the set will be increased by at least
1; i.e, one new ball will be completely removed from S. This is true since if u ∈ Bj , then Bj ⊆
{v ∈ X : d(u, v) ≤ 2L}.

u

old S

new S

Figure 2.1: Analysis of check(L). The red dashed circles denote the balls B1, B2, · · · , Bk. At the
beginning of an iteration, S contains 2 full balls; at the end of the iteration, S contains 3 full balls.

Formally, we shall prove by induction that, after iteration i in the algorithm, there exists a set
I ⊆ [k] of size i, such that

⋃
j∈I Bj ⊆ X \ S. This is clearly true for i = 0. Assume now the

statement holds for i = i′ − 1, for some i′ ∈ [k]; that is there exists a set I ′ ⊆ [k] of size i′ − 1 such
that

⋃
j∈I′ Bj ⊆ X \S at the end of iteration i′− 1. If the algorithm returns at the end of iteration

i′ − 1, there is nothing to prove. Otherwise, in iteration i = i′, we first choose a point u ∈ S. So,
u /∈

⋃
j∈I Bj . Since Bj ⊆ {v ∈ X : d(u, v) ≤ 2L}, there must be some j∗ /∈ I such that u ∈ Bj∗ .

For every point v ∈ Bj∗ , we have

d(u, v) ≤ d(u, cj∗) + d(cj∗ , v) ≤ L + L = 2L.

Thus, all points v ∈ S ∩ Bj∗ shall be removed from S in iteration i. So, at the end of iteration i,
we have

⋃
j∈I′∪{j∗}Bj \X \ S. Thus the statement holds for iteration i = i′ with I = I ′ ∪ {j∗}.

Thus, the algorithm either terminates before iteration k, or at the end of iteration k, S becomes
∅. In either case, the algorithm returns a solution C.

We can use the above procedure to obtain a 2-approximation for the k-center problem. There
are at most

(|X|
2

)
+ 1 possible values for cost(C∗) since cost(C∗) must be the distance between

two points in X. If we run check(L) for every L in the set, we shall obtain a 2-approximation for
k-center.

Lemma 2.3 Algorithm 2 returns a solution C to the k-center instance with cost(C) ≤ 2cost(C∗).

Proof: Let cost(C∗) = di∗ . Then the above algorithm will return a set C at iteration i ≤ i∗, since
it is guaranteed that the algorithm will return a set C at iteration i∗ (if it does not return before
that), by Lemma 2.2. By Observation 2.1, we have cost(C) ≤ 2di ≤ 2di∗ = 2cost(C∗).

Lecture 2: Approximation Algorithm for k-Center 2-3

Algorithm 2 Solving k-center by enumeration

1: Let {d1, d2, · · · , dp} ← {d(u, v) : u, v ∈ X} , d1 < d2 < · · · < dp be the set of all pairwise

distances among points in X; thus p ≤
(|X|

2

)
+ 1

2: for i← 1 to p do
3: if check(di) returns a set C then return C

This establishes that Algorithm 2 is a 2-approximation for k-center. There is one big disadvan-
tage for the algorithm: one has run check(L) possibly Θ(|X|2) times, which is too much. A better
way is to run use binary-search to find the right L.

Algorithm 3 Solving k-center by binary-search

1: Let {d1, d2, · · · , dp} ← {d(u, v) : u, v ∈ X} , d1 < d2 < · · · < dp be the set of all pairwise

distances among points in X; thus p ≤
(|X|

2

)
+ 1

2: a← 1, b← p
3: while a < b do
4: i←

⌊
a+b
2

⌋
5: if check(di) returns a set C ′ then
6: b← i, C ← C ′

7: else
8: a← i + 1

9: return C

Assume cost(C∗) = di∗ . Then at any time of the algorithm, it is guaranteed that a ≤ i∗. Also,
once C is set, we always have that C is a set returned by check(db). Also C will be set at some
iteration. Thus, in the end we have a = b ≤ i∗ and thus cost(C) ≤ 2db ≤ 2di∗ = 2cost(C∗). This
way, we reduce the number of iterations to O(log |X|).

There is an even better algorithm that completely avoids enumerating L. Assume that in the
algorithm check(L), we do not specify the exact value of L, but we require that the algorithm runs
correctly for every L. To be more specific, we consider a game between the algorithm check, who
does not known L, and a verifier who knows L. The verifier maintains a set S, and initially S = X;
the algorithm does not know what S is. The game runs for k iterations. In each iteration, the
algorithm adds some point u to the center set C. Then the verifier sees the point u the algorithm
picked and removes v ∈ S : d(u, v) ≤ 2L from S; the algorithm can not see this operation. The
algorithm runs incorrectly, if at some iteration, S 6= ∅ but the algorithm picks some u /∈ S. Notice
that it is OK if S becomes empty before iteration k but the algorithm keeps running after S becomes
empty. Otherwise, the algorithm runs correctly.

Then the question becomes, how can we make sure that the algorithm always runs correctly,
now matter what L is? This can be guaranteed if the algorithm always chooses the safest u in each
iteration: the point u with the maximum distance to its nearest center in C. This vertex u is the
safest, since if this u has been removed from S, then all points have been removed from S. This
leads to the following algorithm:

It can be shown directly that the above algorithm gives a 2-approximation for k-center. We
shall leave this as a homework exercise.

2-4 Lecture 2: Approximation Algorithm for k-Center

Algorithm 4 Algorithm for k-center without enumerating L

1: C ← {u}, where u is an arbitrary vertex in X
2: for i← 2 to k do
3: let u be the vertex in X with the largest minv∈C d(u, v), breaking ties arbitrarily
4: C ← C ∪ {u}
5: return C

