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In this lecture we are going to discuss an algorithm that can be served as a general technique solving
many other problems including game theory related problems.

21.1 A simple model

There are n experts, indexed by [n]. There is an event that happens once every day. The event has
two possible outcomes: up and down. Each of the expert predicts outcome of this event in each
day. There is an aggregator who wants to predict the event for each day based on the prediction
of all these experts had made so far. The aggregator wants to perform as good as the best expert.
Specifically, the number of mistakes the aggregator made is within a constant approximation ratio
of the number of mistakes the best expert made plus an additive constant.

The following weighted majority algorithm guarantees a ln 2
ln 4/3 approximation ratio. The ratio

can be further improved to 2 + ε.

Algorithm 1 Weighted majority

1: w0
i ← 1, ∀i ∈ [n]

2: for t = 1, 2, · · · , T do
3: if

∑
i:predicts upw

t−1
i ≥

∑
i:predicts downw

t−1
i then

4: aggregator predicts “up”
5: else
6: aggregator predicts “down”

7: for every expert i do
8: if i make a mistake then
9: wti ← wt−1i /2

10: else
11: wti ← wt−1i

Analysis: Let Φt =
∑n

i=1w
t
i .

Let mt
i = 1 if i made a mistake at time t, otherwise mt

i = 0. Let mt = 1 if the aggregator made a
mistake at time t, otherwise mt = 0.
There are two ways to estimate ΦT , one using mistakes of the aggregator for upper bound and
the other using mistakes of experts for lower bound. That will lead to an inequality showing the
relation between the two:
If mt = 1 then more than a half of Φt−1 will be decreased by a half in the weight updating step.
This means Φt ≤ Φt−1/2 + Φt−1/4 = 3

4Φt−1

If mt = 0 we can only say Φt ≤ Φt−1
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In sum,

ΦT ≤
(3

4

)∑T
i=1m

t

Φ0 (21.1)

On the other hand,

ΦT =

n∑
i=1

wTi =

n∑
i=1

(1

2

)∑T
i=1m

t
i ≥

(1

2

)∑T
i=1m

t
i

(21.2)

for every expert i.
Combining (21.1) and (21.2) we have(1

2

)∑T
i=1m

t
i ≤ ΦT ≤

(3

4

)∑T
i=1m

t

Φ0 =
(3

4

)∑T
i=1m

t

n

(− ln 2)

T∑
i=1

mt
i ≤ (− ln

4

3
)

T∑
i=1

mt + lnn By taking ln

T∑
i=1

mt ≤ ln 2

ln 4/3

T∑
i=1

mt
i +

lnn

ln 4/3

The approximation ratio can be further improved to 2(1 + ε) by modifying line 9 of the algorithm:
instead of halving the weight when the expert make a mistake, we decrease the weight by a factor
of (1 + ε). The analysis is left as an exercise.
Furthermore, if we allow randomness for the aggregator in the process of make prediction, the ratio
can be improved to be (1 + ε). This result is stated in the next section in the context of a more
general expert learning model.

21.2 Prediction with expert’s advice game

Below is a description of the game:

for t = 1 · · ·T : do
1. Each expert i ∈ [n] make some advises.
2. Aggregator picks some distribution ~p t = (pt1, p

t
2, · · · ptn) over the experts.

3. Adversary with knowledge of the expert advice and pt, determine a penalty vector ~mt ∈
[−1, 1]n

4. Aggregator observes the penalty and suffers ~p t · ~mt

Notice that here the aggregator doesn’t even need to know the advises of the expert. It actually
learns from the adversary.
The strategy of the aggregator is the following:
Initially assign each expert i a weight w0

i = 1. At time t:

• Pick the distribution proportion to the weights, i.e., ~p tj = wt−1j /Φt−1 where Φt−1 =
∑n

i=1w
t−1
i

• After observing the penalty, set wti = e−εm
t
iwt−1i
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Then we have the following theorem:

Theorem 21.1. For any expert i,

1

T

T∑
t=1

~p t · ~mt ≤ 1

T

T∑
t=1

mt
i +

lnn

Tε
+ ε

Proof: The proof also makes use of the potential function ΦT .
On one hand,

Φt =
n∑
i=1

wti =
n∑
i=1

e−εm
t
iwt−1i

≤
n∑
i=1

(1− εmt
i + ε2)wt−1i

≤
n∑
i=1

(1 + ε2)wt−1i + ε
n∑
i=1

mt
i(p

t
i · Φt−1)

≤ (1 + ε2)Φt−1 − εΦt−1 · (~p t · ~mt)

= (1 + ε2 − ε · (~p t · ~mt))Φt−1

≤ exp[ε2 − ε · (~p t · ~mt)]Φt−1

Therefore

ΦT ≤ exp[Tε2 − ε
T∑
t=1

~p t · ~mt]Φ0

On the other hand, for any expert i

wTi = exp[−ε
T∑
t=1

mt
i] ≤ ΦT ≤ exp[Tε2 − ε

T∑
t=1

~p t · ~mt] · n

Taking natural logarithms,

−ε
T∑
t=1

mt
i ≤ Tε2 − ε

T∑
t=1

~p t · ~mt + lnn

Rearranging the terms and the result follows.
If we let T ≥ lnn

ε2
, the average number of mistakes of the aggregator is better than any of the experts

by an additive error 2ε. Furthermore, we can relax the condition on the range of the penalty vector
to [−ρ, ρ]. This will only add a ρ2 multiplicative term on T in order to achieve the same additive
error. We summarize the result in the following corollary.

Corollary 21.2. In the above game, if the penalty vector is in [−ρ, ρ]n, ε ≤ 1
2 and T ≥ 4ρ2 lnn

ε2
,

then for any expert i

1

T

T∑
t=1

~p t · ~mt ≤ 1

T

T∑
t=1

mt
i + ε
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21.3 Approximate LP feasibility using Multiplicative Weights

21.3.1 Problem formulation

We are given a convex region K ⊆ Rm as some “simple constraints” where the solution lies. For
example, K = [0, 1]m. Also given the “normal” linear constraints Ax � b where A ∈ Rn×m and
b ∈ Rn, we want to decide if the LP problem is feasible or not, i.e., decide if {x ∈ K : Ax � b} = ∅.
If the LP problem is feasible, the algorithm is expected to output an x ∈ K such that Ax � b− ε ·~1.
Otherwise the algorithm should just declare “infeasible”

21.3.2 Algorithm

We will translate this problem to the expert prediction game problem and using Corollary 21.2 to
solve it:
Each expert i corresponds to a linear constraint Aix ≥ bi. The algorithm proceed as follows:

for t = 1 · · ·T : do
choose ~p t using multiplicative weight update rule
Adversary checks if ∃x ∈ K s.t ~p tAx ≥ ~p tb
if exists such x then

adversary assigned the penalty Aix
t − bi to expert i

else
declare “infeasible”

return x∗ = 1
T

∑T
i=1 x

t

21.3.3 Analysis

If adversary can’t find a feasible solution in K for the constraint ~p tAx ≥ ~p tb that means the LP is
infeasible. (If the LP is feasible, then ∃x ∈ K such that the n constraints can be satisfied simulta-
neously, which means their linear combination can be satisfied, contradiction)

Let ρ = supx∈K maxi |Aix− bi|. If T ≥ 4ρ2 lnn
ε2

, ε < 1/2 then ∀i ∈ [n]:

0 ≤ 1

T

T∑
t=1

~p t · (Axt − b) ≤ 1

T

T∑
t=1

(Aix
t − bi) + ε = Aix

∗ − bi + ε

essentially it means that Ax∗ � b − ε · ~1. Also since K is convex, x∗ ∈ K. So the correctness is
proved.


