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22.1 Zero-sum game

A 2-player zero-sum(matrix) game is defined by a matrix M ∈ Rm×n, called the payoff matrix.
There are two players with opposing interests: the row layer wants to minimize the payoff and the
column player wants to maximize the payoff. At each step of the play, the row player choose a
row i ∈ [n] and the column player choose a column j ∈ [m], the entry M(i, j) will be the payoff of
this game and the row player pays that many dollars to the column player. How to play such a game?

Consider the classic rock-scissor-paper game. The payoff matrix looks like this: 0 −1 1
1 0 −1
−1 1 0


In this game, if any of the players has a deterministic(pure) strategy and it is revealed to the other
player, the other player can always gain advantage.
But if they are allowed with mixed strategy then the knowledge of such strategy might not help
the other player. For example, if the row player play each of the three rows with equal probability
1/3, no matter what strategy the column player choose, it will always have expected payoff less or
equal than 0(actually in this special case all possible column strategies result in expected payoff
0). If we exchange the roles of the column and the row player the same logic applies. The value
0 is called the value of the game. This result generalizes to any finite matrix game and it can be
formally stated as below:
A mixed strategy for row player is a distribution D over rows. A mixed strategy for column player
is a distribution P over columns.
Define M(D,P ) = Ei∼D Ej∼P M(i, j), then

Theorem 22.1 (Von Neumann (1928)).

inf
D

max
j∈[m]

M(D, j) = sup
P

min
i∈[n]

M(i, P )

λ∗ = infD maxj∈[m]M(D, j) = supP mini∈[n]M(i, P ) is called the value of the game. It is also
referred as Nash equilibrium in other context.

Our goal is to approximate this value within an additive error. More specifically,
find D̂ s.t. maxj M(D̂, j) ≤ λ∗ + ε and
find P̂ s.t. miniM(i, P̂ ) ≥ λ∗ − ε
This can be done using the expert prediction game.
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22.2 Approximate the value of the zero-sum game

Let’s constraint the game matrix M to be in [−1, 1]m×n.
Let the pure strategies for row player correspond to experts, and pure strategies for column player
correspond to events. The algorithm is the following: To see why this algorithm return an approx-

for t = 1 · · ·T : do
choose Dt using multiplicative weight update rule
Adversary picks jt that maximize M(Dt, j) and penalty for expert i is M(i, jt)

return λ̂ = 1
T

∑T
i=1M(Dt, jt)

imation of λ∗, first note that for any distribution D

M(D, jt) ≥ min
i∈[n]

M(i, jt)

since a distribution is just a weighted average of pure strategies. Then, by the multiplicative weight
update theorem, when T ≥ 4 lnn/ε2 and ε < 1/2

λ̂ =
1

T

T∑
t=1

M(Dt, jt) ≤ min
i

1

T

∑
i∈[n]

M(i, jt) + ε ≤ 1

T

T∑
t=1

M(D, jt) + ε

for every D, especially, when D = D∗, the distribution that achieves the equality in theorem 22.1,
we have

λ̂ =
1

T

T∑
t=1

M(Dt, jt) ≤ λ∗ + ε

To find the distribution D̂ that achieves λ̂, we can simply record all the M(Dt, jt) and report the
distribution D̂ with minimum value. Then

max
j∈[m]

M(D̂, j) = M(D̂, jt) ≤ λ∗ + ε

We can even extract P̂ directly from this algorithm. Let P̂ be such that the probability of taking
the j-th column is 1

T |{t : jt = j}|. Then P̂ satisfies miniM(i, P̂ ) ≥ λ∗ − ε. The proof is left as an
exercise.


