
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 24 (11/15/2017): Sketching and Streaming (I)

Lecturer: Shi Li Scribe: Xiangyu Guo

24.1 Introduction

Data Stream: A massive input sequence of elements ⟨i1, . . . , in⟩ (appears one by one and irre-
versible), where the elements are drawn from a universe [m]

Goal: Compute some function on ⟨i1, . . . , in⟩ with limited storage (usually poly log(n,m) or
min{n,m}α for some α < 1). The required function usually has the following characters:

• Functions are usually “trivial” to compute in traditional non-streaming model.

• Approximation is needed: α-approximation.

• Randomness is needed: with success probability at least 1− δ.

24.2 Counting Distinct Elements

Problem description: Given data stream ⟨i1, . . . , in⟩, count the number of distinct elements, i.e.,
f = |{i1, . . . , in}|, where it ∈ [m] for each it, and assume n is known.

Analysis: if we allow Θ(m) storage then the problem is trivial: just use an array of size m to
count the number of the occurence for each x ∈ [m], and output the number of nonzero slots at the
end. Therefore, we assume m is huge, and our goal is to compute f (approximately) with storage
poly(1/ϵ, 1/δ, log n, logm). Here ϵ represents the degree of approximation and δ denotes the success
probability: we want to get a (1 + ϵ)-approximation of f with probability at least 1− δ.

The first step of our solution is trying to solve a “desicion” version of f : given a threshold T ,
we want to distinguish between the following two cases

1. “Yes” case: if f ≥ (1 + ϵ)T .

2. “No” case: if f ≤ T .

with success probability at least 1 − δ′. If we have such an algorithm A that can distinguish
between the two cases above efficiently, then we can run multiple parallel copies of A′ with T =
1, 1 + ϵ, (1 + ϵ), . . . , (1 + ϵ)log1+ϵ n, and choose the smallest T that A′ returns “No”. Apparently,
T/(1 + ϵ) ≤ f ≤ T , i.e., we get a (1 + ϵ)-approximation to f .

So, how should we design A′? If we have a subroutine that returns correct answer with a
constant probability, then by repeatedly running this subroutine independently for many times, we
are able to boost the success probability to arbitrarily high. We call this subroutine as a single
“experiment”: Suppose there’re indeed l distinct elements, then each single experi will return “Yes”

24-1

24-2 Lecture 24: Sketching and Streaming (I)

Algorithm 1 A Single experiment

1: for every i ∈ [m] do
2: Include i in sample S with probability 1/T .

3: for every t = 1, 2, . . . , n do
4: if it ∈ S then return “Yes”;

with probability 1− (1− 1/T)l ≈ 1− e−l/T . So we have:

Pr[A single experiment report “Yes”] ≥ 1− e−(1+ϵ) △
= p1 (if l ≥ (1 + ϵ)T)

Pr[A single experiment report “No”] ≤ 1− e−1 △
= p0 (if l ≤ T)

To boost the success probability, we run N copies of experiments parallelly. And if the number of
“Yes” answers is at least p0+p1

2 ·N , return “Yes”, otherwise return “No”. By a standard application
of Chernoff’s bound, we can show that N = Θ

(
1
ϵ3
log 1

δ

)
.

There’s only one problem left: in Algorithm 1, the sample S has a expected size of m/T , which
is of order m for small T ’s. But we really don’t need to store the whole S; instead, we can use a
pseudo-random generator of size poly log(n) to replace this sample S. The key idea here is that
you cannot distinguish between a S uniform randomly sampled from [m] and one that is generated
by the pseudo-random generator.

Some final words: Recall that each element it in the stream ranges in [m], so we can use a
m-dimension vector X = (x1, x2, . . . , xm) to store the information of the stream: here xi denote
the number of times that i appears in the stream. Now f = |{i : xi > 0}| is simply the ℓ0-norm of
X . This particular f is also denoted as F0. We can further consider some different types of f , for
example, F1 = ∥X∥1; but this is trivial since ∥X∥1 ≡ n. A more interesting f will be F2 = ∥X∥22,
and we’ll discuss more about it in the next lecture.

