
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 24 (11/17/2017): Sketching and Streaming (II)

Lecturer: Shi Li Scribe: Xiangyu Guo

24.1 Computing F2

Problem description: Given data stream ⟨i1, . . . , in⟩, where it ∈ [m] ∀ t ∈ [n]; and let X =
(x1, x2, . . . , xm) s.t. xi denote the number of times that i appears in the stream. The goal is to
compute F2 — the ℓ2-norm of X , i.e., f = ∥X∥22 =

∑
i∈[m] x

2
i , using only poly(1/ϵ, 1/δ, logn, logm)

storage.

Analysis: We choose a function h uniformly at random from H = {h : [m] 7→ {−1,+1}}, where
H is the set of all function mapping from [m] to {−1,+1}. And our estimator for f is as follows:

Algorithm 1 Estimator for f

1: Z ← 0;
2: for every it comes do
3: Z ← Z + h(it);

4: Output f̂ = Z2;

The first observation is:

Z =
m∑
i=1

xih(i)

And its expectation (w.r.t. the choice of h) is

E[Z2] = E[
m∑
i=1

m∑
j=1

xixjh(i)h(j)] =

m∑
i=1

m∑
j=1

xixjE[h(i)h(j)] =
m∑
i=1

x2i = f

i.e., Z2 is an unbiased estimator for f . Therefore, if Z2 has a small variance, we can give an accurate
estimate for F2. By definition, the variance of Z2 is Var[Z2] = E[Z4]− E2[Z2], where

E[Z4] = E

 ∑
i,j,k,l∈[m]

xixjxkxlh(i)h(j)h(k)h(l)


=

∑
i,j,k,l∈[m]

xixjxkxlE [h(i)h(j)h(k)h(l)]

=
∑
i∈[m]

x4i +

(
4

2

) ∑
i,j∈[m]

x2ix
2
j (24.1)

24-1

24-2 Lecture 24: Sketching and Streaming (II)

The third equality is because E [h(i)h(j)h(k)h(l)] will be zero except for the case E
[
h(i)4

]
or

E
[
h(i)2h(j)2

]
. Thus,

Var[Z2] =
∑
i∈[m]

x4i + 6
∑

i,j∈[m]

x2ix
2
j − (

∑
i∈[m]

x2i)
2

= 4
∑

i,j∈[m]

x2ix
2
j

≤ 2(
∑
i∈[m]

x2i)
2 = 2f2

To clear notations, let Y = Z2, then E[Y] = f,Var[Y] ≤ 2f2. Now similar to the last lecture, we
call each run of Algorithm 1 as a “single experiment”, and run k = ⌈ 2

δϵ2
⌉ experiments independently.

Denote the output of i-th run as Yi, and define Y0 =
1
k (Y1 + Y2 + · · ·+ Yk), then we have

E[Y0] = f, Var[Y0] ≤
2f2

k

By Chebyshev’s inequality,

Pr[|Y0 − E[Y0]| ≥ ϵf] ≤ Var[Y0]

ϵ2f2
=

2

kϵ2
≤ δ

So we get a (ϵ, δ)-approximation with O
(

1
δϵ2

)
memory cost. Actually the O(1/δ) factor can be fur-

ther reduced by then so-called “median trick”: replace each single experiment with the mean output
of O(1/ϵ2) experiments, and make k = O(log(1/δ)) such means (i.e., run O

(
1
ϵ2
log 1

δ

)
experiments

in total). Then we output the median of these O(1/ϵ2) means as the final result. Specifically,
let Ȳ t be the mean of the t-th 6/ϵ2 experiment repetitions, and consider the random variables
W t = I{|Ȳ t − f | > ϵf}(t = 1, . . . , k): by Chebyshev’s inequality, each W t is a Bernoulli random
variable with Pr[W t = 1] ≤ 1/3. So if the median of all Ȳ ts is at least ϵf far away from f , then
at least half of all W ts are 1, of which the probability, by a standard Chernoff bound, decreases
exponentially in k.

There’s only one problem left: how do we sample the random function h? The function set
H is of size 2m, sampling uniformly random from H will require O(m) random bits, which is
unacceptable. But from the derivation of variance (24.1), we can see that h only needs to be 4-wise
independent:

Definition 24.1 (4-wise independent function) Let H be a family of functions from A to B,
H is 4-wise independent if ∀ 4 distinct elements a, b, c, d ∈ A, and 4 values va, vb, vc, vd ∈ B, we
have

Pr
h∈H

[h(a) = va, h(b) = vb, h(c) = vc, h(d) = vd] =

Pr
h∈H

[h(a) = va] Pr
h∈H

[h(b) = vb] Pr
h∈H

[h(c) = vc] Pr
h∈H

[h(d) = vd]

Example 24.2 (4-wise independent function) Let q be a prime, and define ga,b,c,d : [m] 7→ F2q

as follows:
ga,b,c,d(x) = ax3 + bx2 + cx+ d

here a, b, c, d ∈ F2q . Now let ha,b,c,d(x) = 2(ga,b,c,d(x) mod 2) − 1, then H = {ha,b,c,d : a, b, c, d ∈
F2q} is a 4-wise indenpend function family.

Lecture 24: Sketching and Streaming (II) 24-3

24.2 Summary

From these two lectures we conclude that F0 and F2 can be estimated with poly(1/ϵ, log(1/δ), log n, logm)
memory space. And the method we give can even work with stream in more general forms:
⟨(i1,∆1), (i2,∆2), . . . , (it,∆t)⟩, such that xi =

∑
t:it=i∆t. Actually for any Fp with p ∈ [0, 2],

we can obtain a (ϵ, δ)-approximation with poly(1/ϵ, log(1/δ), log n, logm) space. But for Fp where
p > 2, we always need nΩ(1) space.

