
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 3 (09/06/2017): Maximum Coverage, Set Cover

Lecturer: Shi Li Scribe: Zhenggang Xue

3.1 Definitions of Maximum Coverage and Set Cover

Let [n] represents set {1, 2, 3, · · · , n}.

Definition 3.1 (Maximum Coverage) Given S1, S2, · · · , Sm ⊆ [n],
⋃m

i=1 Si = [n] and an inte-
ger k ≥ 1, the goal of maximum coverage is to choose a set I ⊆ [m], so as to maximize |

⋃
i∈I Si|.

That is, we select a sub-collection of S whose size is at most k such that the maximum number
of elements are covered.

Definition 3.2 (Set Cover) Given S1, S2, · · · , Sm ⊆ [n] and
⋃m

i=1 Si = [n], the goal of set cover
problem is to choose a minimum size I ⊆ [m], subject to

⋃
i∈I = [n].

That is, we select the smallest sub-collection of S whose union covers all elements.

3.2 Greedy Algorithms

Algorithm 1 Greedy Algorithms for Maximum Coverage

1: I ← ∅
2: for i← 1 to k do
3: let i∗ ∈ [m], with maximum |Si∗ \

⋃
i∈I Si|

4: I ← I + {i∗}
5: return I

At first, let’s define some notations that will be used in the below analysis. Let opt be the value
of optimum solution and yj be the number of elements our algorithm covered after iteration j. So
we have yj = |

⋃
i∈Ij Si|, where Ij is the set after iteration j.

Claim 3.3

yi − yi−1 ≥
opt− yi−1

k

Proof: let Xj−1 =
⋃

i∈Ij−1
Si and I∗ be the optimum solution. We will have |

⋃
i∈I∗ Si \Xj−1|

elements that are covered in optimum solution but not covered by our greedy algorithm solution
after iteration j − 1. It is trivial that the number of those elements is at least (opt − yj−1) and
this lower bound happens when our greedy algorithm picks sets whose elements are all covered in
optimum solution. So we have |

⋃
i∈I∗ Si \ Xj−1| ≥ opt − yi−1. Since the optimum solution uses

3-1

3-2 Lecture 3: Maximum Coverage, Set Cover

k sets to cover opt elements, some set must cover at least 1
k fraction of the at least (opt − yj−1)

remaining uncovered elements. This means

∃i ∈ I∗, s.t.|Si \Xj−1| ≥
opt− yj−1

k

At each iteration, our greedy algorithm always picks the set that covers the maximum number
of uncovered elements. So for the i∗ we select at iteration j,

|Si∗ \Xj−1| ≥
opt− yj−1

k

so we get

yi − yi−1 ≥
opt− yi−1

k

This claim means that at each iteration, the new added uncovered elements by our algorithm
will be at least 1

k of the elements which are covered by optimum solution but not in our set after
last iteration.

Lemma 3.4

opt− yj ≤ (1− 1

k
)(opt− yj−1)

Proof: Consider

opt− yj = opt− yj−1 − (yj − yj−1)

≤ opt− yj−1 −
opt− yj−1

k

= (1− 1

k
)(opt− yj−1)

This lemma ensures that each iteration will decrease the gap between optimum and greedy
result by a factor of (1− 1

k).

Theorem 3.5 Greedy algorithm is a (1− 1
e)-approximation for Maximum Coverage.

Proof:

opt− yk ≤ (1− 1

k
)k(opt− y0)

= (1− 1

k
)k · opt

≤ 1

e
· opt

Lecture 3: Maximum Coverage, Set Cover 3-3

Algorithm 2 Greedy Algorithms for Set Cover

1: I ← ∅, V = [n]
2: while V 6= ∅ do
3: let i∗ ∈ [m], with maximum |Si∗ \

⋃
i∈I Si|

4: I ← I + {i∗}, V ← V \ Sj

5: return I

Theorem 3.6 (Feige) : Unless NP ⊆ DPTIME(nO(lgn)), then there is no (1−1
e+ε)-approximation

for maximum coverage for any ε > 0.

Now we turn to Set Cover problem. The approximation algorithm for Set Cover is almost the
same with the one for Maximum Coverage.

Here we assume that optimum solution of Set Cover can cover all the n elements using k set.
So the question will be: for what iteration j can we guarantee n− yj = 0?

Since n and yj are both integers and n > yj , so the condition n− yj = 0 can be replaced with
n− yj < 1. For Set Cover problem, opt will be n. Via lemma 3.1, we can get n− yj ≤ (1− 1

k)j · n.
To guarantee that at j iteration we have n− yj < 1, there is (1− 1

k)j · n < 1 ⇒

j > lg1− 1
k

1

n
=

lnn

ln 1
1− 1

k

= Θ(k · lg n)

Theorem 3.7 Greedy algorithm is a (c · lg n)-approximation for Set Cover.

3.3 Sub-modular function

A sub-modular function is a set function whose value has the property that the difference in the
incremental value of the function that a single element makes when added to an input set decreases
as the size of the input set increases.

Let 2Ω be all subsets of Ω.

Definition 3.8 (Sub-modular function) f : 2Ω → R≥0 is a sub-modular function if ∀X ⊆ Y ⊆
Ω and u ∈ Ω \ Y , we have f(Y

⋃
{u})− f(Y) ≤ f(X

⋃
{i})− f(X).

Given S1, S2, · · · , Sm ⊆ [n]. ∀I ⊆ [m], define g[I] = |
⋃

i∈I Si|, and we will have below lemma.

Lemma 3.9 g is a sub-modular on 2[m].

Next, we introduce a general problem based on sub-modular function called max-sub-modular-
function problem.

Definition 3.10 (max-sub-modular-function) Given a monotone sub-modular function f :
2[m] → R≥0, and an integer k ≥ 1, find a set I ⊆ [m], |I| = k, so as to maximize f [I].

3-4 Lecture 3: Maximum Coverage, Set Cover

Algorithm 3 Greedy Algorithms for Max-Sub-Modular-Function

1: I ← ∅
2: for i← 1 to k do
3: let u ∈ Ω be the element that maximizes f(I

⋃
{u}

4: I ← I + {u}
5: return I

Many problems, such as our Maximum Coverage problem, can be cast as special cases of this
general maximization problem under suitable constraints.

Similarly, we also have greedy algorithm for max-sub-modular-function problem.
Let I∗ be the optimum solution, |I∗| = k, and f(I∗) = opt.

Lemma 3.11 f(I
⋃
I∗)− f(I) ≤

∑
u∈I∗\I(f(I

⋃
{u})− f(I)).

Proof: Suppose I∗ \ I = {u1, u2, · · · , up}, we have

f(I
⋃

I∗)− f(I) = f(I
⋃
{u1})− f(I)

+ f(I
⋃
{u1, u2})− f(I

⋃
{u1})

· · ·
· · ·

+ f(I
⋃
{u1, u2, · · · , up})− f(I

⋃
{u1, u2, · · · , up−1})

≤ f(I
⋃
{u1})− f(I) + f(I

⋃
{u2})− f(I) + · · ·+ f(I

⋃
{up})− f(I)

=
∑

u∈I∗\I

(f(I
⋃
{u})− f(I))

From this lemma, we can derive that there exists a u ∈ I∗ \ I, so that f(I
⋃
{u}) − f(I) ≥

1
k (f(I∗)− f(I)) ≥ 1

k (opt− f(I)). That equals to

opt− f(I
⋃
{u} ≤ opt− f(I)− 1

k
(opt− f(I))

= (1− 1

k
)(opt− f(I))

With same proof, for max-sub-modular-function, the greedy algorithm gives (1−1
e)-approximation.

