
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 5 (09/10/2017): Knapsack Covering and Packing

Lecturer: Shi Li Scribe: Luting Chen

5.1 The Knapsack Packing Problem

In the knapsack problem (also named as max-knapsack problem), we have a knapsack with a limited
space and are provided with a set of items, each with a size and some value. So how can we choose
a subset of the items, so that we won’t exceed the capacity of the knapsack and maximize the value
of the chosen items? The mathematical description is the following:

Given a set of n items [n], each item i ∈ [n] has a size si and value vi and the knapsack has
capacity B. The goal is to find a subset I ⊆ [N] s.t.

∑
i∈I si ≤ B and maximaize

∑
i∈I vi.

A intuitive thinking exploits the greedy algorithm: sort items in decreasing order by unit value
vi
si

and keep picking items with highest unit value until the knapsack can no longer fit in more.
This seemingly correct algorithm only works when we can pick a fraction of one item, however it
doesn’t work for integral knapsack packing problem, which is the configuration of our problem. It’s
easy to come up with a counter case: B = 100 and there are only two items with s1 = 1, v1 = 1.001
and s2 = 100, v1 = 100. Running the greedy algorithm, we will end up only choosing item1 with
value 1.001 since item1 has a higher unit value than item2, however the optimal solution is choosing
item2, which gives us value 100.

One correct way to solve this problem is using dynamic programming(DP). Define function

f
(
i, B

′
)

= maxI⊆[n]:S(I)≤B′V (I) with S(I) =
∑

i∈I si and V (I) =
∑

i∈I vi. f
(
i, B

′
)

represent the

maximum value from the first i items that can fit into a knapsack with size B
′
. As a result, f (n,B)

gives the answer to our problem. We can use a n×B table and recursion to solve the problem:

Initialize
(
i, B

′
)

= 0,∀B′
= 0, 1, 2, · · · , B

f
(
i, B

′
)

= max

max
{
f
(
i− 1, B

′
)
, f
(
i− 1, B

′ − si
)

+ vi

}
if si ≤ B

′

f
(
i− 1, B

′
)

if si > B
′

Here, f
(
i− 1, B

′
)

means we don’t choose the ith item, while f
(
i− 1, B

′ − si
)

+ vi means we

choose the ith item. The running time for the DP algorithm is O (nB) in theory for we need to
compute each cell in the table. In practice, we can speed up the process by using a cache to store
partial results or the bottom-up design to compute cells that are useful.

Dual Problem

The dual problem of the previous knapsack problem is compute g (i, V), which means the minimized
size of chosen items with value at least V. Using DP, we have the following:

g (0, 0) = 0

5-1

5-2 Lecture 5: Knapsack Covering and Packing

g (0, v) =∞

g (0, v) =∞

g (i, v) = min (g (i− 1, v) , si + g (i− 1, v − vi))

After computing the whole table g, we can find the answer to the original problem by getting
max {v : g (n, v) ≤ B}.

5.2 Pseudopolynomial Time Algorithm

Definition 5.1 A numeric algorithm runs in pseudopolynomial time if its running time is polyno-
mial in the numeric value of the input, but is exponential in the length of the input.

Since input numbers are encoded in binary, the size of input B is actually logB, so the time
complexity O (nB) is exponential in the size of the input number B, not polynomial. However if
we were to assume inputs are given in unary, then O (nB) would be polynomial in the size of the
input.

5.3 Approximation Scheme for Knapsack Problem

The main idea of designing a polynomial DP algorithm for the knapsack problem is rounding items’
values to smaller scales and the rounding error is not that great at the same time. Note that we
can only round and change the value of items not their sizes because we may change the feasibility
of the problem if we change sizes.

We scale vi and only keep the integer part of the scaled value. For each new instance of scaled

value v
′
i =

⌊
vi
µ

⌋
, where µ is the scale factor and is defined as µ = εM

n . ε is the approximation ratio

and M is all items’ maximum value M = maxi∈[n]vi. For each item v
′
i, we can easily have

v
′
i ≤

⌊
M

µ

⌋
=
⌊n
ε

⌋
,

and this shows a running time complexity of O(n · n ·
(
n
ε

)
) = O(n

3

ε).

Next, let’s prove the algorithm is (1-ε)-approximate of the optimal solution. We define the
following four terms first:
OPT: optimal solution of the original instances(item values are not scaled)
opt: the value configuration of the optimal solution with original instances.
OPT

′
: optimal solution of the new instances(item values are scaled)

opt
′
: the value configuration of the optimal solution with new instances.

We use the optimal solution of the new instance for our algorithm:∑
i∈OPT ′

vi ≥
∑

i∈OPT ′

(v
′
iµ) = µ

∑
i∈OPT ′

v
′
i = µOPT

′

Lecture 5: Knapsack Covering and Packing 5-3

≥ µ
∑

i∈OPT
v
′
i ≥

∑
i∈OPT

(vi − µ) =
∑

i∈OPT
vi − |OPT |µ

≥ opt− nµ = opt− εM ≥ opt(1− ε)

|OPT | represent the number of items selected in the optimal solution and |OPT | ≤ n. And
another observation is opt ≥ M and that’s why opt − εM ≥ opt − εopt = opt(1 − ε). We could
make ε as small as possible to get closer to the optimal solution of the original instances, but the
time complexity is O(n

3

ε), smaller ε leads to longer running time. This is a trade-off between time
efficiency and result quality.

Dual Problem

Here we can no longer round the value because it may change the feasibility of the problem. We
round sizes instead and carry out the DP algorithm.

5.4 PTAS and FPTAS

Definition 5.2 PTAS(Polynomial-Time Approximation Scheme) is an algorithm which takes an
instance of an optimization problem and a parameter ε > 0 and, in polynomial time, produces a
solution that is within a factor 1 + ε of being optimal.

Definition 5.3 FPTAS(Fully Polynomial-Time Approximation Scheme) is an algorithm which
takes an instance of an optimization problem and a parameter ε > 0 and, in FULLY polyno-
mial time in n (the size of the problem) and in 1/ε, produces a solution that is within a factor 1 +
ε of being optimal.

5.5 Weakly NP-hard and Strong NP-hard

Definition 5.4 A problem is Weakly NP-hard when it is NP-hard only if input integers are not
polynomial-bounded.

Definition 5.5 A problem is Strong NP-hard when it is NP-hard even if input integers are polynomial-
bounded.

If a problem is strong NP-hard, it cannot admit FPTAS. The knapsack covering problem is
weakly NP-hard.

