
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 6 (09/15/2017): Scheduling on Identical Machines with DP

Lecturer: Shi Li Scribe: Luting Chen

6.1 Scheduling on Identical Machines

The job scheduling problem is defined as the following: Given n jobs with processing time P1, P2,
P3, · · · , Pn ≥ 0 and we need to schedule these n jobs on m machines with m ≥ 1,the goal is to
divide n jobs into m sets J1, J2, · · · , Jm, so as to minimize maxi∈[m]

∑
j∈Ji Pj .

In Lecture 4, this problem is solved by greedy algorithm and here we present that it can also
be solved in PTAS(polynomial time approximation scheme). The main idea is we only focus on
a subset of longest jobs and compute the optimal solution for this subset and then we extend the
partial scheduling solution by using list scheduling on the other remaining jobs.

Important parameters include the following:

• C∗max: cost of the optimal solusion

• T: estimation of C∗max and it’s a upper bound of C∗max where T ≥
∑n

j=1 Pj

m = P ([n])
m .

• k: a fixed positive integer.

• S: short jobs if Pj ≤ T
k .

• L: long jobs if Pj ≥ T
k .

• A′
: a black box algorithm to schedule jobs only in L with cost≤ αT .

Algorithm 1 A

1: Run A
′

to obtain a schedule only of L with makespan at most αT.
2: Run greedy algorithm on jobs in S, starting from the above schedule. Each time run one short

job on the machine with the least workload.

Lemma 6.1 A
′
gives a schedule with makespan max

{
α, 1 + 1

k

}
.

Proof: Let’s use i∗ to present the machine with the largest job load. There are two cases we
need to distinguish:

• Case1: the last job on i∗ is a long job, then Cmax ≤ αT .

• Case2: the last job on i∗ is a short job, then Cmax ≤ 1
mP ([n]) + 1

kT ≤ (1 + 1
k)T .

Algorithm A
′

gives a near-optimal schedule of only long jobs by rounding input sizes and

dynamic programming. We round each long job j ∈ L by P
′
j =

⌊
Pj
T
k2

⌋
T
k2

and P
′
j is very close

to Pj . And there are only k2 different values for P
′
j if no job is longer than T. We could use a

6-1

6-2 Lecture 6: Scheduling on Identical Machines with DP

k2−dimensional vector to describe the inputs, where the ith component specifies the number of
long jobs of rounded size equal to iT

k2
, with i ∈

{
1, 2, · · · , k2

}
.

Algorithm 2 A
′

1: P
′
j =

⌊
Pj
T
k2

⌋
T
k2

2: So we have P
′
j = c(T

k2
) where c ∈

{
k, k + 1, · · · , k2

}
(start from k because we only consider long

jobs)
3: Let J(c1, c2, · · · , ck2) be a set of jobs, where job c1 has size T

k2
, job c2 has size 2T

k2
,·, job ck2 has

size T.
4: Let f(c1, c2, · · · , ck2) be the minimum number of machines to schedule jobs J(c1, c2, · · · , ck2),

so that the maximum makespan is T.
5: Recursion:f(c1, c2, · · · , ck2) = 1+min

c
′
1,c

′
2,··· ,c

′
k2

,where
∑l=1

k2
c
′
l
T
k2

l≤T f(c1−c
′
1, c2−c

′
2, · · · , ck2−c

′

k2).

For the recursion part in Algorithm A
′
,

• f(0, 0, 0, · · · , 0) = 0

• For c1 from 0 to k, c2 from 0 to k, · · · , ck2 from 0 to k,
if (c1, c2, · · · , ck2) = (0, 0, · · · , 0),then f(c1, c2, · · · , ck2) = 0

• else f(c1, c2, · · · , ck2) =∞.
For c

′
1 from 0 to k, c

′
2 from 0 to k, · · · , c′k2 from 0 to k:

if c
′
1
T
k2

+ c
′
2
T
k2
· 2 + c

′
3
T
k2
· 3 + · · ·+ c

′

k2
T
k2
· k2 ≤ T ,

temp = 1 + f(max
{

0, c1 − c
′
1

}
,max

{
0, c2 − c

′
2

}
, · · · ,max

{
0, ck2 − c

′

k2

}
),

if temp < f(c1, c2, · · · , ck2),
f(c1, c2, · · · , ck2) = temp and π(c1, c2, · · · , ck2) = (c

′
1, c

′
2, · · · , c

′

k2)

6.2 Summary

In this section, we have a brief summary of using rounding and dynamic programming to solve job
scheduling on identical machines problem.

• The overall basic idea is that we round the input integers so that the size will be smaller and
can be solved in polynomial time. We also need to pay attention to rounding errors, which
should be under control.

• The dynamic programming part has time complexity nO(k2).

• If T ≥ max
{

P [n]
m , Pmax

}
, anything can happen: the algorithm either fails or return a schedule

with makespan (1 + 1
k)T .

• If T < max
{

P [n]
m , Pmax

}
is an upper bound on the optimum, the algorithm will always return

a schedule with makespan (1 + 1
k)T .

Lecture 6: Scheduling on Identical Machines with DP 6-3

6.3 3 Partition Problem

The problem is the following: we have m machines and 3m jobs. Can we find a scheduling of jobs
where each machine has 3 jobs and the same total processing time?

This problem is a classic NP-hard and it cannot be solved in polynomial time.

