CSE 632: Analysis of Algorithms II Fall 2017

Lecture 7 (09/20/2017): Linear Programming
Lecturer: Shi Li Scribe: Yuze Liu

7.1 Linear Programming Basic

First we have a simple example for Linear Programming:
min (3z1 4 2z9) s.t

1+ 29 >3
2%‘1—3.%'225
1+ 4x9 > 6
x1, 22 >0

A more general form of the linear programming is:

min (c121 + coxa + - - + cpxy) S.t.

a1121 + a12x2 + - - - + a1pTy > by
a2171 + a22% + -+ + a9pTy > by

AmT1 + Amax2 + -+ AmnTp > by,
T1,T2,X3,+ ,Tpn >0

And we can write the above expression in a more simple way:

c1 x1 a1, a12,a13, -+ , 0y b1
2 T2 a21,G22, 023, "+ ,02p bo
Cn Tn Aml, Am2, m3, " , Amn bn

min(c?z) s.t.

Az = b
x>0

There exists an efficient algorithm to solve a linear programming.
e Simplex method : non-polynomial time, practical method
e Elliposoid method : polynomial-time in theory, not very good in practice.

e Interior Point method : good at both side.

7-2 Lecture 7: Linear Programming

Integer Programming :

min(c’'z) s.t.

Az > b
xz € {0,1}" < z; € {0,1},Vi € [n]

Integer Programming is NP-hard problem.

72 (1- %)-Approximation Algorithm for maximum Coverage

Given this S, S2,- -+ ,Sm C [n]
k>1
Output : I C [m],|I| <k
maximize | U;er S
we can take this problem as Integer program by using the following expression:

y; = © € [m], whether we take S; or not, y; € [0,1]

xzj €0,1,j € [n], whether j is covered or not.
Output : max }; z;

We can observe two relationship from this problem:

1€[m],jE€S;

Zyi <k
=1
zj €0,1,Y5 € [n]
y; € 0,1,Vi € [m]

This is a NP-hard probelm and we can’t solve it efficiently, but we can convert this Integer
Program to Linear Program by making the following changes.
LP relaxation for max coverage :

maxg rj s.t.
J

v < Y wynVien
i€[m],j€S;

m
Zyi <k
i—1

x; € [0, 1],Vj S [n]
yi € [0,1],Vi € [m]

Lecture 7: Linear Programming 7-3

let :

opt = value of IP
Ip = calue of LP

Goal :
sol>(1—-1)ip>(1-1) opt

y; in IP : indicating whether S; is selected or not
y; in LP : can be viewed as the probability that we selecting .5;

Algorithm 1 Rounding Algortihm 1
1: for each i € [m] do
2: w.p. y; let y; =1
3: w.p. 1—y; let y; =0
4: for each j € [n] do
5 let 7 = min{l, 3", icq Ui}
return {S; :y; =1

Figure 7.1: Figure of example of Dependence rounding

Dependence Rounding : In every iteration, make one more coordinate integral and keep the
marginal probabilities until get a integral vector. Above is a figure of dependence rounding :

y = (y1,92,93) = (0.3,0.8,0.9)
7e{0,1°, st + g+ =2
Ey=y
The number on each edge in the figure is the marginal probability.

Lemma 7.1 1
BlF] 2 (1-)z

7-4 Lecture 7: Linear Programming

Algorithm 2 Rounding Algortihm 2
1: 4;=0,Viem
2: for ¢t < 1 to k do

3: choose i* accroding to the following distribution:
. 'k 5] — Yi

4: Pr[i = ZL— ST

5: let y; <~ y; +1

return {S; :y; > 1}

6: for each j € [n] do
T '@ = min{l? Zi:jesi :ng'b}
n 177/
=E[} z]=20--) ;)
i=1 =
Proof: > >
» » Y; icg Y
BT =1 — (1 — 2S5 Tk 5 q (1 _ Z=ZBI€5 Tk
5] = 1= (1= S 5 - - s
T
>1—(1-=2)k
(1)

Note : 1 —xz < e %, true Vx

Need :
j 1
>1—= for zj€(0,1]

