
CSE 632: Analysis of Algorithms II Fall 2017

Lecture 7 (09/20/2017): Linear Programming

Lecturer: Shi Li Scribe: Yuze Liu

7.1 Linear Programming Basic

First we have a simple example for Linear Programming:
min (3x1 + 2x2) s.t

x1 + x2 ≥ 3
2x1 − 3x2 ≥ 5
x1 + 4x2 ≥ 6
x1, x2 ≥ 0

A more general form of the linear programming is:
min (c1x1 + c2x2 + · · ·+ cnxn) s.t.

a11x1 + a12x2 + · · ·+ a1nxn ≥ b1
a21x1 + a22x2 + · · ·+ a2nxn ≥ b2
...
amx1 + am2x2 + · · ·+ amnxn ≥ bm
x1, x2, x3, · · · , xn ≥ 0

And we can write the above expression in a more simple way:

c =

c1
c2
...
cn

 x =

x1
x2
...
xn

 A =

a11, a12, a13, · · · , a1n
a21, a22, a23, · · · , a2n
...
am1, am2, am3, · · · , amn

 b =

b1
b2
...
bn

min(cTx) s.t.{

Ax � b
x � 0

There exists an efficient algorithm to solve a linear programming.

• Simplex method : non-polynomial time, practical method

• Elliposoid method : polynomial-time in theory, not very good in practice.

• Interior Point method : good at both side.

7-1

7-2 Lecture 7: Linear Programming

Integer Programming :
min(cTx) s.t.{

Ax � b
x ∈ {0, 1}n ⇐⇒ xi ∈ {0, 1},∀i ∈ [n]

Integer Programming is NP-hard problem.

7.2 (1− 1
e)-Approximation Algorithm for maximum Coverage

Given this S1, S2, · · · , Sm ⊆ [n]
k ≥ 1

Output : I ⊆ [m], |I| ≤ k
maximize | ∪i∈I Si|

we can take this problem as Integer program by using the following expression:

yi : i ∈ [m], whether we take Si or not, yi ∈ [0, 1]
xj ∈ 0, 1, j ∈ [n], whether j is covered or not.
Output : max

∑
j xj

We can observe two relationship from this problem:

xj ≤
∑

i∈[m],j∈Si

yi,∀j ∈ [n]

m∑
i=1

yi ≤ k

xj ∈ 0, 1,∀j ∈ [n]

yi ∈ 0, 1, ∀i ∈ [m]

This is a NP-hard probelm and we can’t solve it efficiently, but we can convert this Integer
Program to Linear Program by making the following changes.

LP relaxation for max coverage :

max
∑
j

xj s.t.

xj ≤
∑

i∈[m],j∈Si

yi,∀j ∈ [n]

m∑
i=1

yi ≤ k

xi ∈ [0, 1], ∀j ∈ [n]

yi ∈ [0, 1],∀i ∈ [m]

Lecture 7: Linear Programming 7-3

let :

opt = value of IP

lp = calue of LP

Goal :
sol ≥ (1− 1

e) · lp ≥ (1− 1
e) · opt

yi in IP : indicating whether Si is selected or not
yi in LP : can be viewed as the probability that we selecting Si

Algorithm 1 Rounding Algortihm 1

1: for each i ∈ [m] do
2: w.p. yi let ỹi = 1
3: w.p. 1− yi let ỹi = 0

4: for each j ∈ [n] do
5: let x̃j = min{1,

∑
i:j∈Si

ỹi}
return {Si : ỹi = 1}

Figure 7.1: Figure of example of Dependence rounding

Dependence Rounding : In every iteration, make one more coordinate integral and keep the
marginal probabilities until get a integral vector. Above is a figure of dependence rounding :

y = (y1, y2, y3) = (0.3, 0.8, 0.9)

ỹ ∈ {0, 1}3, s.t.ỹ1 + ỹ2 + ỹ3 = 2

E ỹ = y

The number on each edge in the figure is the marginal probability.

Lemma 7.1

E[x̃j] ≥ (1− 1

e
)xj

7-4 Lecture 7: Linear Programming

Algorithm 2 Rounding Algortihm 2

1: ỹi = 0, ∀i ∈ m
2: for t← 1 to k do
3: choose i∗ accroding to the following distribution:
4: Pr[i∗ = i] = yi∑m

i=1 yi

5: let ỹi ← ỹi + 1
return {Si : ỹ1 ≥ 1}

6: for each j ∈ [n] do
7: x̃j = min{1,

∑
i:j∈Si

ỹi}

⇒ E[
n∑

j=1

x̃j] ≥ (1− 1

e

n∑
j=1

xj)

Proof:

E[x̃j] = 1− (1−
∑

i:j∈Si
yi∑m

i=1 yi
)k ≥ 1− (1−

∑
i:j∈Si

yi

k
)k

≥ 1− (1− xj
k

)k

≥ 1− [e−xj/k]k = 1− e(−xj)

Note : 1− x ≤ e−x, true ∀x

Need :
1− e−xj

xj
≥ 1− 1

e
for xj ∈ (0, 1]

