
CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 1-2 (8/28/2019,8/30/2019): Introduction
Lecturer: Shi Li Scriber: Shi Li

1 Introduction

• Almost all algorithms learned in CSE431/531: Analysis of Algorithms I are “deterministic”:
if we run the algorithm twice on the same input, the courses of the two executions and their
outputs will be exactly the same.

• In this course, we shall study “randomized” algorithms, which have “random” behaviors.

• Why do we use randomized algorithms?

1. We can get simpler algorithms by using randomness. For example, randomized quick-
sort, randomized 7/8-approximation for 3-SAT are much simpler than their deterministic
counterparts, and there is a simple random algorithm for 2-SAT.

2. We can get faster algorithms by using randomness. Examples for these algorithms in-
clude randomized probability identity testing, Freivald’s matrix multiplication verification
algorithm, and algorithms using sampling and fingerprinting.

3. Some randomized algorithms are mathematically beautiful. The “distribution view” may
give nice properties about the considered problem (e.g, Nash equilibrium).

4. Sometimes, we can use probabilistic method to argue about the existence of an object.

• Price of using randomness. However, the benefits come with some prices.

1. There is some chance that the algorithm is incorrect.

2. There is some chance that the algorithm takes a long time to terminate.

2 Two examples of randomized algorithms

2.1 Example 1: Freivald’s algorithm for verifying matrix multiplication

• Problem: Given three matrices A,B,C ∈ Zn×n, we need to check if C = AB.

• Straightforward algorithm: compute C ′ = AB and check if C ′ = C.

• Running time of the algorithm depends on the algorithm we choose for matrix multiplication.

– Naive algorithm: O(n3)

– Strassen’s algorithm: O(n2.81)

– Best algorithm for matrix multiplication: O(n2.3729).

To make the algorithm faster and faster, we need to make it more and more complicated.

• Instead, Freivald’s algorithm is a randomized algorithm that runs in O(n2) time.

• Algorithm A: Freivald’s Algorithm with one experiment

1: randomly choose a vector r ∈ {0, 1}n
2: check if ABr = Cr

• What is the running time of the algorithm? It depends on how we compute ABr

– If compute using the order (AB)r, then we have to multiply A and B and the algorithm
is not better than the deterministic version.

– We can compute using the order A(Br) and the running time is O(n2).

So the running time of A is O(n2).

• What about the correctness of the algorithm?

– If AB = C, then it will always output ”yes”, which is desired.

1

– If AB 6= C, we need to the output to be “no”, but A may output “yes” since it might
happen that ABr = Cr. However, we show that the probability of ABr = Cr is small.

Lemma 1. If AB 6= C, then A outputs “no” with probability at least 1/2.

Proof. Let D = C − AB 6= 0. Cr = ABr is equivalent to Dr = 0. So, we need to compute
Pr[Dr 6= 0]. Since D 6= 0, there exists some i, j ∈ [n] such that Dj,i 6= 0. We shall only focus on the
i-th row Di of D.

Dir =

n∑
j′=1

Di,j′rj′ =: X + Y,

where we define X =
∑

j′∈[n],j′ 6=j Di,j′rj′ and Y = Di,jrj . Then

Pr[Dir 6= 0] = Pr[Y 6= −X] =
∑
x∈Z

Pr[X = x] · Pr[Y 6= −x|X = x]

=
∑
x∈Z

Pr[X = x] · Pr[Di,jrj 6= −x|X = x]

≥
∑
x∈Z

Pr[X = x] · 1

2
=

1

2
.

The inequality in the third line used the fact that Di,j 6= 0 and at most one value of rj from {0, 1}
can make Di,jrj = −x.

So, we have Pr[Dr 6= 0] ≥ Pr[Dir 6= 0] ≥ 1
2 .

The probabilities of the algorithm outputting “Yes” and “No” under the cases AB = C and
AB 6= C are as follows:

Yes No
AB = C 1 0
AB 6= C ≤ 1/2 ≥ 1/2

The constant 1/2 in the lemma may be unsatisfactory. But we can boost the probability by running
A k times. The new algorithm outputs “Yes” if and only all the k results are “Yes”. For the new
algorithm, we have the following probabilities:

Yes No
AB = C 1 0
AB 6= C ≤ 1/2k ≥ 1− 1/2k

We say 1/2k is the error probability of the algorithm. If we let k = 10, then the error probability of
the algorithm will be 1/210 ≤ 0.001.

We say the Frievald’s algorithm is a Monta Carlo algorithm :

Definition 2. A Monta Carlo algorithm is a randomized algorithm whose output may be incorrect
with some probability.

For a “Yes/No” output Monta Carlo algorithm, we say the algorithm has one-sided error if it
makes error only if the correct output is “Yes” (or “No”). Otherwise, we say the algorithm has
two-sided error.

2.2 Randomized quick-sort and selection

Given n integers A[1..n] (for simplicity, we assume they are all distinct), two problems of interest
are:

• the sorting problem: it asks for sorting the n integers in increasing order.

• the selection problem: we are given an integer i ∈ [n], and need to output the i-th smallest
number in A.

2

• We have many O(n log n)-time deterministic sorting algorithms : merge-sort, heap-sort and
quick-sort.

• The selection problem can be solved using any sorting algorithm.

We shall consider quick-sort algorithm.

• It is more practical.

• It leads to an algorithm for the selection problem with O(n)-running time.

There are two versions of quick-sort algorithm. The deterministic quick-sort algorithm has
O(n log n)-running time in the worst case but it needs to use the complicated divide-and-conquer
median-finder algorithm, which is impractical. The randomized quick-sort algorithm, on the other
hand, only has expected running time of O(n log n) but is easy to implement.

Algorithm 1 deterministic(randomized)-quick-sort(A)

1: if |A| ≤ 1 then return A
2: x← median of A (a random number in A)
3: B ← array of integers in A that are smaller than x
4: C ← array of integers in A that are bigger than x
5: return deterministic(randomized)-quick-sort(B) concatenating [x] concatenating

deterministic(randomized)-quick-sort(C)

Algorithm 2 deterministic(randomized)-selection(A, i)

1: if |A| ≤ 1 then return A[1]
2: x← median of A (a random number in A)
3: B ← array of integers in A that are smaller than x
4: C ← array of integers in A that are bigger than x
5: if i ≤ |B| then
6: return deterministic(randomized)-selection(B, i)
7: else if i = |B|+ 1 then
8: return x
9: else

10: return deterministic(randomized)-selection(C, i− |B| − 1)

2.3 Analysis of Expected Running Time of Randomized Selection

In this lecture we only analyze the expected running time of the randomized selection algorithm.
For every j = 0, 1, 2, · · · ,, let Xj denote the size of A in the j-th recursion of randomized-selection
(notice that each recursion shall call at most one recursive call). For simplicity, the root-recursion
is the 0-th recursion. When the j-the recursion does not exist, we define Xj = 0. For every j ≥ 0,
and integer n′, we have

E[Xj+1|Xj = n′] ≤ 1

n′

n′∑
k=1

max{k − 1, n′ − k}

≤ 1

n′

(∫ n′/2

k=0

(n′ − k)dk +

∫ n′

k=n′/2

kdk

)

=
1

n′

((
n′k − k2

2

) ∣∣n′/2

0
+

k2

2

∣∣n′

n′/2

)
=

1

n′

(
n′2

2
− n′2

8
+

n′2

2
− n′2

8

)
=

3n′

4
.

For the inequality in the first line, we let k be the rank of the random number we selected in A. (An
integer in A has rank k if it is the k-th smallest integer in A). So, k is evenly distributed in [n′]. So
there are k − 1 integers in A that are smaller than x and n′ − k integers in A that are bigger than
x. In the next iteration, A will have have size at most max{k − 1, n′ − k}. So the inequality in the
first line follows. The equality in the second line is by some simple observations.

3

Thus, we have E[Xj+1] ≤ 3
4 E[Xj]. Applying the inequality for every j ≥ 0 and using the fact

that X0 = n always holds, we have E[Xj] ≤
(
3
4

)j
n. One simple observation is that the running time

of the randomized quick sort is at most O(1)×
∑∞

j=0 Xj . By linearity of expectation, we have

E[running time of randomized selection] ≤ E

O(1)

∞∑
j=0

Xj

 ≤ O(1)

∞∑
j=0

E[Xj]

≤ O(1)

∞∑
j=0

(
3

4

)j

n = O(1) · 4n = O(n).

The randomized selection algorithm we gave is a Las-Vegas algorithm, which is a randomized
algorithm that always outputs a correct solution but has randomized running time. It may happen
that a Las-Vegas algorithm can take a long time; often we bound its expected running time.

Table 1: Comparisons between Monta Carlo and Las Vegas Algorithms.

correctness running time
Monta Carlo may be wrong usually has good worst-case running time

Las Vegas always correct may take a long time and usually only has good “expected
running time”

The properties about the running time of Monta Carlo and Las Vegas algorithms in the table
are not required by their definitions, but rather, are what we expect when we call an algorithm a
Monta Carlo or Las Vegas algorithm.

2.4 A Relationship between Monta Carlo and Las Vegas Algorithms

Lemma 3. Given a Las Vegas algorithm A with expected running time at most T (n), we can design
a Monta Carlo algorithm A′ with worst-case running time O(T (n)) and error at most 0.99.

The 0.99 in the above lemma can be changed to any constant smaller than 1. To show the
lemma, in our algorithm A′, we run A for 100T (n) units time. If A terminated, we output what A
outputs; otherwise, we output anything (a garbage). So, the algorithm takes O(T (n)) time (the O
notation hides the constant 100 and a constant required for simulating A′). By Markov Inequality
that we shall learn in the future, we have Pr[A runs for more than 100T (n) units time] ≤ 1/100. So
the probability that A′ outputs what A outputs is at least 0.99. Since A is always correct, A′ is
correct with probability at least 0.99.

4

