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1 Concentration bounds for bounding probability

We consider the following motivating Problem: Toss a fair coin n times, what is the probability that
we get at least 0.6n head-up’s. How fast does the probability diminish as n grows?

We shall give three concentration inequalities, each being stronger than the previous one. The
upper bounds on the probability of the above event E given by the three inequalities are given below:

• Using Markov’s Inequality: the Pr(E) ≤ 5
6 .

• Using Chebyshev’s Inequality: the Pr(E) ≤ 25
2n .

• Using Chernoff Bound: the Pr(E) ≤ e−0.006n.

2 Markov’s Inequality and Chebyshev’s Inequality

2.1 Markov’s Inequality

Lemma 1 (Markov’s Inequality). Let X be a random variable taking non-negative values and µ =
E[X], then for every a ≥ 1, we have

Pr[X > aµ] <
1

a
.

Proof. Assume Pr[X > aµ] ≤ 1
a then we can get

E[X] >
1

a
· aµ = µ.

This is a contradiction with E[X] = µ.

To apply Markov’s Inequality on the motivating question, we define X to be the of head-up’s we
get, then µ = E[X] = 0.5n, so we have Pr[X ≥ 0.6n] ≤ µ

aµ = 5
6 . The inequality is weak, in the sense

that the upper bound 5
6 does not decrease as n grows.

2.2 Chebyshev’s Inequality

Lemma 2 (Chebyshev’s Inequality). Let X be a random variable, µ = E[X], Var[X] = δ2, where
σ ≥ is the standard deviation of X. Then for ∀a ≥ 1, we have

Pr[|x− µ| > a · σ] <
1

a2
.

Proof. Assume Pr[|x− µ| > a · σ] ≥ 1
a2 . Then we can get

Var[X] = E[(X − µ)2] ≥ 1

a2
· (a · σ)2 = σ2.

This contradicts with Var[X] = σ2.

Applying Chebyshev’s Inequality to the motivating question. Because the n coin tosses are
independent, we have Var[X] = Var[X1] + Var[X2] + · · · + Var[Xn] = n

4 , where Xi is the result of
the i-th coin toss. Recall that µ = E[X] = 0.5n. So,

Pr[X > .6n] =
1

2
Pr[|X − µ| > 0.1n] <

1

2

(
1

0.2
√
n

)2

=
25

2n
.

Above, we use the Cheybshev’s inequality for a = 0.1n
σ = 0.1n√

n/2
= 0.2

√
n. So, unlike Markov’s

inequality, Chebyshev’s Inequality gives a bound on Pr[X > 0.6n] that decreases as n grows.
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3 Chernoff Bounds

Lemma 3. Let X1,X2, ... ,Xn be independent variables taking values in [0,1]. Let X = X1 +X2 +
X3 + ...+Xn and µ = E[X], then for every δ > 0 we have

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ
,

and Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ
.

For a simple form with looser bounds, we have for every δ ∈ (0, 1),

Pr[X > (1 + δ)µ] < e
−δ2µ

3 ,

and Pr[X < (1− δ)µ] < e
−δ2µ

2 .

Proof. Let t be some number whose value will be decided later. As X is the sum of n independent
variables, we have

E[etX ] = E[et(X1+X2+...+Xn)] = E

[
n∏
i=1

etXi

]
=

n∏
i=1

E[etXi ].

Let us define µi = E[Xi], for every i ∈ [n]. Then as etx is a convex function of x, we have for every
i ∈ [n]

E[etXi ] ≤ E[(1−Xi)e
t·0 +Xie

t·1] = 1− µi + etµi = 1 + (et − 1)µi.

So,

E[etX ] ≤
n∏
i=1

[1 + (et − 1)µi] ≤
n∏
i=1

e(e
t−1)µi = e

∑n
i=1(e

t−1)µi = e(e
t−1)µ.

Assume t ≥ 0, use Markov’s Inequality here, we can get

Pr[X > (1 + δ)µ] = Pr[etX > et(1+δ)µ] ≤ e(e
t−1)µ

et(1+δ)µ
= e[e

t−1−t(1+δ)]µ

Set t = ln(1 + δ), we have et − 1 − t(1 + δ) = 1 + δ − 1 − (1 + δ) ln(1 + δ) = δ − (1 + δ) ln(1 + δ).

Then ee
t−1−t(1+δ) = eδ

(1+δ)1+δ
. This gives the first inequality in the lemma.

To see the second inequality (for which we can assume δ ∈ (0, 1)), we set t be a negative number.
Then

Pr[X < (1− δ)µ] = Pr[etX > et(1−δ)µ] ≤ e(e
t−1)µ

et(1−δ)µ
= e[e

t−1−t(1−δ)]µ

Set t = ln(1− δ) < 0, we have et− 1− t(1− δ) = 1− δ− 1− (1− δ) ln(1− δ) = −δ− (1− δ) ln(1− δ)
and ee

t−1−t(1−δ) = e−δ

(1−δ)1−δ . This gives the second bound.

For δ ∈ (0, 1), we have

δ − (1 + δ) ln(1 + δ) ≤ δ − (1 + δ)
2δ

2 + δ
=
−δ2

2 + δ
≤ −δ

2

3
.

−δ − (1− δ) ln(1− δ) ≤ −δ − (1− δ) −2δ

2− δ
=
−δ2

2− δ
≤ −δ

2

2
.

For the motivating question, we have Pr[X > 0.6n] = Pr[X > (1 + 0.2)µ] ≤ exp
(
−0.22µ/3

)
≤

e−0.006n.
Notice that the Chernoff bound requires the n random variables to be independent, while Cherbe-

shev’s inequality holds without independence of the random variables. Indeed, the latter only in-
volves one random variable X.
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