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1 Concentration bounds for bounding probability

We consider the following motivating Problem: Toss a fair coin n times, what is the probability that
we get at least 0.6n head-up’s. How fast does the probability diminish as n grows?

We shall give three concentration inequalities, each being stronger than the previous one. The
upper bounds on the probability of the above event E given by the three inequalities are given below:

e Using Markov’s Inequality: the Pr(E) < 2.
e Using Chebyshev’s Inequality: the Pr(E) < 22.
e Using Chernoff Bound: the Pr(E) < e~0-006n,

2 Markov’s Inequality and Chebyshev’s Inequality

2.1 Markov’s Inequality

Lemma 1 (Markov’s Inequality). Let X be a random variable taking non-negative values and p =
E[X], then for every a > 1, we have

PriX > au] < é.
Proof. Assume Pr[X > ap] < 1 then we can get
E[X] > é~a,u:/¢.
This is a contradiction with E[X] = p. O

To apply Markov’s Inequality on the motivating question, we define X to be the of head-up’s we

get, then y = E[X] = 0.5n, so we have Pr[X > 0.6n] < 2 = 2. The inequality is weak, in the sense

that the upper bound % does not decrease as n grows.

2.2 Chebyshev’s Inequality

Lemma 2 (Chebyshev’s Inequality). Let X be a random variable, p = E[X], Var[X] = §2, where
o > is the standard deviation of X. Then for Ya > 1, we have

1
Pr[|x—/¢|>a'a]<¥.

Proof. Assume Pr[|z — pu| > a- 0] > Z. Then we can get
1
Var[X] = E[(X — p)?] > — (a- 0)* =’
a
This contradicts with Var[X] = o2. O

Applying Chebyshev’s Inequality to the motivating question. Because the n coin tosses are
independent, we have Var[X] = Var[Xi] + Var[Xs] + --- + Var[X,,] = %, where X; is the result of
the i-th coin toss. Recall that 4 = E[X] = 0.5n. So,

1 1/ 1 \* 25

Above, we use the Cheybshev’s inequality for a = 0';" = \%;’2 = 0.2y/n. So, unlike Markov’s
inequality, Chebyshev’s Inequality gives a bound on Pr[X > 0.6n] that decreases as n grows.




3 Chernoff Bounds

Lemma 3. Let X1,Xs, ... ,X,, be independent variables taking values in [0,1]. Let X = X; + X5 +
X5+ ...+ X, and p = E[X], then for every § > 0 we have

0

Pr[X > (1+6)u] < ((1:5)1%) )

e d .
and PriX < (1-96)u] < ((1_5)16> .

For a simple form with looser bounds, we have for every é € (0,1),
M
Pr[X > (1+6)] < e=5%,
52
and Pr[X < (1 —-0)u] < e

Proof. Let t be some number whose value will be decided later. As X is the sum of n independent
variables, we have

E[etX] — E[et(X1+X2+-~'+Xn)] — E

Hetxil = HE[etX'i].
i=1 i=1
Let us define u; = E[X,], for every i € [n]. Then as €' is a convex function of x, we have for every
i€ [n]
E[eXi] <E[(1 — X;)et? + Xset ) =1 — s + el = 14 (e — 1) .

So,

E[etX] < H[l + (e = D) < H o€ =Dui — X (e =Dpi _ ole'=1p,
i=1 i=1

Assume t > 0, use Markov’s Inequality here, we can get

e(etfl)/‘

Pr[X > (14 6)u] = Pr[e’® > et(1+6)u] < T = ele’ —1=t(14+8)ln
Set t =In(1+44), we have e’ —1—t(1+) =1+0—1—(1+6)In(1+0) =6 — (1 +6)In(L +9).

Then ¢ ~1-t(1+0) — ﬁ. This gives the first inequality in the lemma.

To see the second inequality (for which we can assume § € (0,1)), we set ¢ be a negative number.
Then

(e'=)p .
Pr[X < (1 —6)u] = Pr[etX > t(1-91] < € _ let—1-t(1-0)u

— et(1-d)p

Set t =In(1—¢) <0, wehavee! —1—t(1—0)=1-6—1—(1-§)In(1—§) = —6— (1 —4§)In(1 —9)
e'—1-t(1-5) _

and e %. This gives the second bound.
For ¢ € (0,1), we have

_ 52 2
(5—(1+5)ln(1+5)§5—(1+5)%:ﬁ56§_%.

_ Y 2
S (l—8)Im(1—0) < —6—(1—g)—20 - = 9

2-6 2-6- 2°

O
For the motivating question, we have Pr[X > 0.6n] = Pr[X > (1 + 0.2)p] < exp (—0.221/3) <
—0.006n_

Notice that the Chernoff bound requires the n random variables to be independent, while Cherbe-
shev’s inequality holds without independence of the random variables. Indeed, the latter only in-
volves one random variable X.



