CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms Lecture 11 (10/2/2019): Discrepancy

Lecturer: Shi Li

Scriber: Shuyan Chen

1 Review of Chernoff Bounds

Let X_1, X_2, \ldots, X_n be independent random variables, taking values in [0,1]. Let $X = \sum_{i=1}^n X_i$, and $\mu = \mathbb{E}[X]$. Then $\forall \delta > 0$, we have $\Pr[X > (1+\delta)\mu] < (\frac{e^{\delta}}{(1+\delta)^{1+\delta}})^{\mu}$ and $\Pr[X < (1-\delta)\mu] < (\frac{e^{-\delta}}{(1-\delta)^{1-\delta}})^{\mu}$. In this and the next lecture, we shall consider two applications of the Chernoff bound on $\Pr[X > (1+\delta)\mu]$. In particular, we apply the bound for δ tending to 0 and ∞ respectively in the two applications. It is convenient to think of $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ as $e^{-\delta^2/2}$ when δ goes to 0, and as $\frac{1}{\delta^{\delta}}$ when δ goes to ∞ .

2 Problem Description

Assume we have *m* subsets: $S_1, S_2, ..., S_m$ of [n] (think of that $m = \Theta(n)$). For a coloring $\chi : [n] \to \{-1, 1\}$. Let define discrepancy of S_i w.r.t the coloring χ to be $\operatorname{disc}\chi(S_i) = |\sum_{j \in S_i} X(j)|$. Thus, if we view -1 and 1 as two different colors, then $\operatorname{disc}\chi(S_i)$ is the difference between the numbers of elements in S_i with the two colors. Our goal is to find a coloring χ with small $\max_{i \in [m]} \operatorname{disc}_{\chi}(S_i)$.

Give an example about discrepancy. Assume n = 4 and m = 6, we have 4 subsets given in the following table. Let the coloring χ be the following: $\chi_1 = \chi_3 = \chi_4 = -1$ and $\chi_2 = \chi_5 = \chi_6 = 1$. So the disc_{χ}(S_i) given in the table.

Table	1:	Discrepancy	of	subsets.
-------	----	-------------	----	----------

i	S_i	$\operatorname{disc}_{\chi}(S_i)$
1	$\{1,2,3,4\}$	2
2	$\{1,5,6\}$	1
3	$\{1,2,5,6\}$	2
4	$\{3,4,6\}$	1

Thus χ has maximum discrepancy 2. If we change χ_3 to 1 and χ_5 to -1, then the maximum discrepancy becomes 1.

2.1 Find a good coloring χ

Theorem 1. There is a coloring χ s.t $max_{i=1}^{m} disc_{\chi}(S_i) = O(\sqrt{n \log m})$.

So, if $n = \Theta(m)$, then there is a coloring χ with maximum discrepancy $O(\sqrt{n \log n})$.

Proof. We randomly give each element a $\{\pm 1\}$ color and show that with high probability the coloring has a small discrepancy. Define $X_j = \begin{cases} 0 & \text{w.p } \frac{1}{2} \\ 1 & \text{w.p } \frac{1}{2} \end{cases}$. Then the coloring of j will be $\chi_j = 2X_j - 1$.

For a fixed set S_i we have $\mathbb{E}[\sum_{j \in S_i} X_j] = \frac{|S_i|}{2}$. We can define a super set $S'_i \supseteq S_i$ and dummy variables $X_j \in [0, 1]$ for every $j \in S'_i \setminus S_i$. We make sure that X_j for every $j \in S'_i \setminus S_i$ is deterministic and $\sum_{j \in S'_i \setminus S_i} X_j = \frac{n-|S_i|}{2}$. Thus $\mathbb{E}[\sum_{j \in S'_i} X_j] = \frac{n}{2}$.

$$\Pr\left[\sum_{j\in S_i} X_j > \frac{|S_i|}{2} + \frac{\delta n}{2}\right] = \Pr\left[\sum_{j\in S'_i} X_j > \frac{n}{2} + \frac{\delta n}{2}\right] = \Pr\left[\sum_{j\in S'_i} X_j > (1+\delta)\frac{n}{2}\right].$$

Suppose $\delta \in [0, 1]$, by using Chernoff bound, we have

If we set $\delta = \sqrt{\frac{6 \ln (4m)}{n}}$ and assume $\delta < 1$. Then we have

$$\Pr\left[\sum_{j \in S'_i} X_j > (1+\delta)\frac{n}{2}\right] < e^{-\frac{\delta^2}{3} \cdot \frac{n}{2}} = \frac{1}{4m}.$$

This, implies $\Pr\left[\sum_{j \in S_i} X_j > \frac{|S_i|}{2} + \frac{\delta n}{2}\right] < \frac{1}{4m}$. Similarly, we can prove $\Pr\left[\sum_{j \in S_i} X_j < \frac{|S_i|}{2} - \frac{\delta n}{2}\right] < \frac{1}{4m}$. So we have

$$Pr\left[\left|\sum_{j\in S_i} X_j - \frac{|S_i|}{2}\right| > \frac{\delta n}{2}\right] \le \frac{1}{2m}$$

Lemma 2 (Union Bound). Suppose there are events E_1 , E_2 , ..., E_m , such that E_i happens with probability p_i for every i in this m. Then with probability at least $1 - \sum_{i=1}^{m} p_i$, none of the m events happens.

Applying the union bound, we have

$$\Pr\left[\forall i \in [m], \left|\sum_{j \in S_i} X_j - \frac{|S_i|}{2}\right| \le \frac{\delta n}{2}\right] \ge 1 - m \cdot \frac{1}{2m} = \frac{1}{2}.$$

Notice that $\left|\sum_{j\in S_i} X_j - \frac{|S_i|}{2}\right| \leq \frac{\delta n}{2}$ is equivalent to $\left|\sum_{j\in S_i} \chi_j\right| \leq \delta n$. Thus, with probability at least 1/2, we have $\max_{i\in[m]} \operatorname{disc}_{\chi}(S_i) \leq \delta n = O(\sqrt{n\log m})$. In particular, this implies there exists a coloring χ such that the event happens.

When $\delta \ge 1$ then the discrepancy is at most $n \le \delta n = O(\sqrt{n \log m})$.

Notice that the proof not only proves the existence of a good coloring χ , but also gives a randomized algorithm that produces such a coloring χ : We just let χ be a random coloring and check if it has maximum discrepancy at most δn or not; if not we repeat. Since the success probability is at least 1/2, in expectation we only need to run the procedure twice.