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Lecture 11 (10/2/2019): Discrepancy
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1 Review of Chernoff Bounds

Let X1,X5, ... ,X,, be independent random variables, taking values in [0,1]. Let X = >""" | X;, and
1 -9

pu=E[X]. ThenVd > 0, we have Pr[X > (14+6)u] < ((Hf;m)“ and Pr[X < (1-4)u] < Ql—%ﬁ)u'

In this and the next lecture, we shall consider two applications of the Chernoff bound on Pr[X >

(14 0)pu]. In particular, we apply the bound for ¢ tending to 0 and oo respectively in the two

applications. It is convenient to think of ﬁ as e=9/2

to oo.

when § goes to 0, and as 6% when § goes

2 Problem Description

Assume we have m subsets: S1, Sa, ..., Sm of [n] (think of that m = ©(n)). For a coloring x : [n] —
{—1,1}. Let define discrepancy of S; w.r.t the coloring x to be discx(S;) = | > ;cs, X (j)|- Thus, if
we view —1 and 1 as two different colors, then discy(.S;) is the difference between the numbers of
elements in S; with the two colors. Our goal is to find a coloring x with small max;e[,,) discy (S;) -

Give an example about discrepancy. Assume n = 4 and m = 6, we have 4 subsets given in the
following table. Let the coloring x be the following: x1 = x3 = x4 = —1 and x2 = x5 = x¢ = 1. So
the disc, (S;) given in the table.

Table 1: Discrepancy of subsets.

) Sl diSCX(SZ')
1] {1234} 2
2| {1,5,6} 1
3 {1,2,5,6} 2
4| {346} 1

Thus x has maximum discrepancy 2. If we change x3 to 1 and x5 to -1, then the maximum
discrepancy becomes 1.

2.1 Find a good coloring x
Theorem 1. There is a coloring x s.t maxi™,disc,(S;) = O(v/nlogm).
So, if n = ©(m), then there is a coloring x with maximum discrepancy O(y/nlogn).
Proof. We randomly give each element a {£1} color and show that with high probability the coloring
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has a small discrepancy. Define X; = . Then the coloring of j will be x; = 2X,; — 1.
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For a fixed set S; we have E[} .o X;] = IS;'. We can define a super set S, O S; and dummy

variables X; € [0, 1] for every j € S;\S;. We make sure that X for every j € S;\ S; is deterministic
—|Si n
and 3 g0 5, Xj = " |, Thus B[y cq X = 5.
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Suppose § € [0, 1], by using Chernoff bound, we have
If we set § =/ W and assume § < 1. Then we have
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Pr ZXj > (1+6)g <e
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This, implies Pr | >, ¢, X; > |527“ + %"} < 4. Similarly, we can prove Pr [Zjesi X; < % — %"} <

1
I+ S0 we have

>5n < 1
217 2m
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Lemma 2 (Union Bound). Suppose there are events Ey, E2, ... ,E,,, such that E; happens with
probability p; for every i in this m. Then with probability at least 1 —>""" | p;, none of the m events
happens.

Applying the union bound, we have
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Notice that Zjes,- X, — ISQ"" < %" is equivalent to ‘Zjes,- X;| < on. Thus, with probability at

least 1/2, we have max;¢,, disc, (S;) < én = O(y/nlogm). In particular, this implies there exists a
coloring x such that the event happens.
When ¢ > 1 then the discrepancy is at most n < dn = O(y/nlogm). O

Notice that the proof not only proves the existence of a good coloring x, but also gives a ran-
domized algorithm that produces such a coloring x: We just let x be a random coloring and check
if it has maximum discrepancy at most dn or not; if not we repeat. Since the success probability is
at least 1/2, in expectation we only need to run the procedure twice.



