
CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 12 (10/4/2019): Congestion Minimization
Lecturer: Shi Li Scriber: Hanping Zhang

1 Congestion Minimation

Given a directed graph G = (V,E) and k source-sink pairs (s1, t1), (s2, t2), · · · , (sk, tk) in V , the
goal of the problem is to choose k paths P1, P2, · · · , P −K in graph G, where Pi connects si to ti,
such that the congestion of the paths is minimized:

congestion = max
e∈E

∣∣{i ∈ [k] : e ∈ Pi}
∣∣.

Let n = |V | be the number of vertices of the graph G. The problem is NP-hard to thus it is
unlikely that we can find the optimum solution efficiently. In this lecture, we show that we can find
a good solution efficiently:

Theorem 1. There is a polynomial time algorithm that outputs a solution with congestion O(lgn
lg lgn)·

C, where C is the optimum congestion for the input instance.

1.1 Linear Programming Relaxation

The basic idea is constructing a fractional solution. Let Pi for every i ∈ [k] denote the set of all

paths connecting si to ti. We define P =
⋃k
i=1 Pi.

We first design an integer programming that is equivalent to the congestion minimization prob-
lem. For every P ∈ P, let xP ∈ {0, 1} indicate whether we are using the path P or not. Then we
have the following integer program:

min C

s.t.
∑
P∈Pi

xP = 1 ∀i ∈ [k]

∑
P∈Pi

xP ≤ C ∀e ∈ E

xP ∈ {0, 1} ∀P ∈ P

Again we can not solve the integer program efficiently. Instead, we solve a linear programming
relaxation of the above IP, by relaxing the constraint xP ∈ {0, 1},∀p ∈ P to xP ∈ [0, 1],∀p ∈ P.
For a technical reason, we also add the constraint C ≥ 1. Then we obtain an linear program (LP).
After solve the LP, we obtain a vector (xP)P∈P with congestion C, which is at most the optimum
congestion, denoted as CIP henceforth, for the original problem.

One remark is that the LP contains exponential number of variables (since there are exponential
number of paths) and solving it directly requires exponential time. However there is a compact
linear program of polynomial size that is equivalent to the LP above. Solving the compact LP, we
obtain a solution for the LP above. In particular, this means that there are only polynomial number
of non-zero coordinates in the vector x.

1.2 Randomized Rounding

Algorithm 1 randomized rounding for congestion minimization

1: solve the LP to obtain (xP)e∈P , that minimizes the C.
2: for every i ∈ [k], choose one path P ∈ Pi randomly, s.t. the probability of choosing P is exactly
xP .

3: output the selected paths.

1

1.3 Analysis of the congestion for each edge e

We now fix an edge e ∈ E. We use Xi ∈ {0, 1} to indicate whether the path selected for (si, ti) uses
e. The expected value of Xi is µi := E[Xi] =

∑
P∈Pi:e∈P xP . Let X =

∑
i∈[k]Xi be the congestion

of e. Then we have

µ := E[X] =

k∑
i=1

µi =
∑

P∈P,e∈P
xP ≤ C,

by the constraints in the LP.
The {Xi : i ∈ [k]} variables are independent. Again, we can use similar trick as we did in

the last lecture for the discrepancy minimization problem: we add dummy deterministic variables
{X ′b : b ∈ [B]} so that

∑
b∈[B]X

′
b = C − µ. Then, we can apply Chernoff bounds to obtain:

Pr[X ≥ (1 + δ)C] ≤ Pr[X + C − µ ≥ (1 + δ)C] ≤
(

eδ

(1 + δ)1+δ

)C
≤ eδ

(1 + δ)1+δ
, since C ≥ 1.

We want to set a value for δ so that the probability is at most 1
2n2 . How large should δ be?

To get an idea on the answer, we think of the probability on the right side as 1/δδ. Thus we need
δδ = N := 2n2. If δ is a function that δδ = N , then what is the order of δ as a function of

N . The answer is δ = Θ
(

logN
log logN

)
. To see this, first consider δ′ = logN

log logN . For large enough

N we have, δ′δ
′

= (logN
log logN)

log N
log log N ≤ (logN)

log N
log log N =

(
2log logN

) log N
log log N = 2logN = N . Then

consider δ′ = 2 logN
log logN . For large enough N , we have δ′δ

′
= (2 logN

log logN)
2 log N

log log N ≥
√

logN
2 log N

log log N =(
2log logN/2

) 2 log N
log log N = 2logN = N .

Then, it is easy to argue that if we set δ = O
(

logN
log logN

)
= O

(
logn

log logn

)
to be large enough, then

we

Pr[X ≥ (1 + δ)µ] ≤ 1

2n2
. (1)

By the union bound over the up to n2 edges in the graph, we have

Pr[∃e ∈ E, congestion of e ≥ (1 + δ)C] ≤ n2 × 1

2n2
=

1

2
.

This bound is good enough because we can repeat the algorithm many times to make the probability
close to 0. Because we have C ≤ CIP = optimal congestion for the congestion minimization problem,

we can output a solution with congestion at most O
(

logn
log logn

)
· C ≤ O

(
logn

log logn

)
· CIP.

2 A Related Problem: Machine Minimization

We can obtain an O
(

logn
log logn

)
-approximation for a very similar problem called the machine mini-

mization problem.

• Problem: Given n non-preemptive jobs,

– each job j has an arrival time sj ,

– each job j has a deadline dj ,

– each job j has a length pj ,

– sj , dj and pj are integers, where sj + pj ≤ dj .
• To process a job j, we need to use one machine, and run the job in a time interval of length
pj in [sj , dj].

• A machine can only process at most one job at any time.

• Goal: Run all the jobs using the minimum number of machines.

• Assume all parameters are integers between 0 and T and T ≤ poly(n).

2

2.1 Linear Program Relaxation

Again, we can design a linear program relaxation for the problem.

• xj,t = 1 denotes that job j is scheduled in the interval [t, t+ pj], where sj ≤ t ≤ dj − pj

min C

dj−pj∑
t=sj

xj,t = 1 ∀j

∑
j,t′:t′−pj≤t≤t′−1

xj,t ≤ C ∀t′

xj,t ∈ {0, 1} ∀j, t

By relaxing xj,t ∈ {0, 1} to xj,t ∈ [0, 1] and add C ≥ 1, we obtain a linear program relaxation for
the problem.

2.2 Randomized Rounding algorithm to solve Machine Minimization

Algorithm 2 randomized rounding for machine minimization

1: We first solve the LP to obtain (xj,t)j,t:sj≤t≤dj−pj that minimizes the C.
2: For every job j, randomly schedule it in the interval (t, t+ pj] with probability xj,t.

Using a very similar analysis, we can show that if δ = O
(

log T
log log T

)
= O

(
logn

log logn

)
is set to be large

enough, then we have Pr
[
∃t ∈ [T],number of intervals covering (t − 1, t] > (1 + δ)C

]
≤ 1

2 . We can
repeat the rounding algorithm until the bad event does not happen. Also, notice that given a set of
intervals satisfying that ∀t ∈ [T],number of intervals covering (t−1, t] ≤ (1+δ)C, one can efficiently
assign the intervals to (1 + δ)C machines such that the intervals assigned to the same machine do
not overlap.

3

