CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 13-14 (10/9/2019, 10/11/2019): Johnson Lindenstrauss

Lecturer: Shi Li Scriber: Hanping Zhang, John Rivera

1 Dimension Reduction

e Problem: Given n data points in a d-dimensional space, where d may be very large.
e Fact: Many algorithms are inefficient (in terms of time or space) if d is big.

e Goal: We want to reduce the dimension d. Meanwhile, we maintain the pointwise distances
between any 2 of the n points.

Theorem 1. Suppose ay,as, ..., a, are n points in RY and € € (0,1). For some k = 0(1052"), there
exists a linear function f : R — R* such that:

Vi, gt (1= e)llai — ayll* < (@) = fla)|* < (1 +e)llai — ay]|*.

The idea is of the proof is that we randomly project the n points to a k-dimensional space. In order
to show how to do a random projection, we need to use normal distributions.

2 Normal distribution (Gausian distribution)

The standard normal distribution A/(0, 1) has the probability density function f(z) = \/%e_é.

Properties of the standard normal distribution: (Below, assume X is a variable following the
distribution.)

e symmetric around 0
e highly concentrated
— Pr[X € [-1,1]] = 0.683
— Pr[X € [-2,2]] = 0.955
— Pr[X €[-3,3]] = 0.997
e expection (mean) = 0, standard deviation = 1
e The Cumulative Distribution Function (CDF)

O(x) =Pr[X <z] = /f ft)de

has no closed form.
In general, we have the normal distribution A (i, 0?) with mean p and variance o2.

e Probability Density Function (PDF) of N (u,0?):

1 _(=—pw?

fx) =

2ro

e Suppose X1, X, ..., X, are n independent variables following the standard normal distribution,
and a7y, as,...,a, € R. Then,
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With normal distribution, we can choose a direction uniformly at random. First consider the
cases in 2-dimension.



e If we choose z,y € [—1,1] independently and uniformly at random and use (x,y) as the
direction, this does not give a uniformly random direction. The up-right direction (1,1) will
have higher density than the right direction (1, 0).

e We can choose uniformly at random 6 ~ [0,27) and let (z = cosf,y = sinf). Then this is a
uniform direction. However this approach is hard to be extended to the 3-dimensional case.
(z,y)
224y?2

random chosen. This can be generalized to d dimensions: X7, Xo, ..., X4 randomly and independently

from N(0, 1), then

Indeed, we can choose z,y ~ N (0,1) independently. Then, is a direction uniformly at

(X1, Xo,..., X4a)
VXI+ X3+ .+ X2
is a direction chosen uniformly at random in a d-dimension space.
Also, many distributions can be approximated using normal distributions. For example, assume

each X;,i € [n] is chosen randomly from {—1,1} and consider X = """ | X;. Notice that E[X] =0
and Var[X] = n. Then, - 5 1s very close to the standard normal distribution N(0,1).

3 Proof of JL-Theorem

We choose a matrix M € RF*¢ where every entry m; ; is chosen independently from A(0,1). Then

we define the mapping f to be:
Ma
fla) = —=.
Vk
We need to show that the f satisfies the property of the theorem statement with high probability.
We fix a pair i # j € [n], and define r = a; — a,;. Then ||| denotes the distance between a; and a;.
% is the distance between the two points in the projected space. We now compute the expected

square length of Mr.
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If j # j/, then we know E[m, ;m; ;;] = 0 since m; ; and m; j are independent standard normal

variables. If j = j', then E[m; jm; j] = E[m; ;] = Var(N(0,1)) = 1. Thus, we have

d
E[|Mr|?] =Y Y rf = kIl
j=1
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Indeed, the above equality can be proved directly. Let M be the i-th row vector of M. Then M;r

will be a normal variable with mean 0 and variance Zj 73 = |I7||*. Thus, E[|M;r||*] = [|r||* for
every i € k and E[||Mr|]?] = k||r|*.
3.1 Proof of Concentration Bound
In this section, we show
5'2 C
Pr[| Mr|? > (1+¢)k|r|?] < e ,and (1)
Pr{| Mr|? < (1 - e)k|r|?] < e (2)

using the analysis similar to the proof of Chernoff bounds. If we choose k = O(log") to be large

enough, then we have e~ a2 < 5,z- Applying union bound, with probability at least , for every 14
and j, we have
(1 = O)klla; — ail® < [|M(a; — ai)||* < (1 + e)klla; — ail|*.



This will finish the proof of the JL theorem. Indeed, the proof gives a randomized algorithm to
produce the matrix M.

We only prove Inequality (1); the proof of Inequality (2) will be symmetric For every i € k, let
X; = M;r, where M; is the i-th row vector of M. Notice that |Mr|? = Zl L X2, Let t € (0,1/2)
be any number we have

Pr ZX2 1 + E =Pr {et S X7 > et(1+5)k}
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< ATk by Markov Inequality
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We used that E[e!X7] = \/11_7% This can be proved as follows:
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We choose t = (13_6) < % Then
Pr ZX2 (14 e)k| < exp fﬁ(Qt(lJre)Jrln(lth))
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< 671@(62/2763/3)/2.
Above, we used that In(1+¢€) <e— % + %, which can be derived from the Taylor expansion of
In(14¢€). If € < 1, then the probability is at most e~*<*/12_ This finishes the proof of Inequality (1).

4 Application of JL Theorem in Streaming Algorithms

One application of the analysis of the JL theorem is designing a streaming algorithm for estimating
the Lo-norm of a vector that comes online. Let U be huge universe. Every time an element v € U
comes, we need to add it to the counter f,, that indicates the frequency of u in the stream. We
want to estimate || f[|3 = > ,cp fa-
Consider the following algorithm:
1: Randomly construct a matrix M € R¥*U for some k whose value will be decided later, where
each entry is chosen independently and randomly from the normal distribution.
2: Output % using the following procedure: Let v < (0,0,0,0,... ,O)k' initially. whenever u
comes, we update v < v + M, where M, is the column of M correspondent to u. Then, we
output ||v||?/k.



By the analysis of the JL theorem, we can show that if choose a large enough k = O(logi#),
then the probability that our output is within (1 & €)||f||? is at least 1 — . However, the above
algorithm does not work directly since we have to store the whole matrix M at the beginning: this
is needed to make sure that we are using the same column for the same element wu.

The issue can be handled using pseudo-randomness, which is a topic beyond the scope of this
course. The idea is that we have a pseudo-random matrix generating algorithm .4, which takes a
small length string s and output a matrix M. Then, in our algorithm, we randomly choose the string
s and store it in memory. Whenever we need to use M,, we simply call the algorithm A(s) and use
the u-th columns of the output matrix (to save time, we do not need A to output all columns, just
the u-th column). In other words, we pretend that the distribution of the matrix that A outputs is
similar to the one generated using normal distributions. Psudo-randomness theory says that there
exists such an algorithm 4 such that an time or space restricted algorithm (including our algorithm
for estimating || f||?) will not be able to distinguish between the two distributions; in other words, the
pseudo-random matrix generator A is able to “fool” our algorithm. Thus, the streaming algorithm
will have almost the same behavior as if the matrix was generated using normal distributions.



