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1 Dimension Reduction

• Problem: Given n data points in a d-dimensional space, where d may be very large.

• Fact: Many algorithms are inefficient (in terms of time or space) if d is big.

• Goal: We want to reduce the dimension d. Meanwhile, we maintain the pointwise distances
between any 2 of the n points.

Theorem 1. Suppose a1, a2, ..., an are n points in Rd and ε ∈ (0, 1). For some k = O( logn
ε2 ), there

exists a linear function f : Rd → Rk such that:

∀i, j : (1− ε)‖ai − aj‖2 ≤ ‖f(ai)− f(aj)‖2 ≤ (1 + ε)‖ai − aj‖2.

The idea is of the proof is that we randomly project the n points to a k-dimensional space. In order
to show how to do a random projection, we need to use normal distributions.

2 Normal distribution (Gausian distribution)

The standard normal distribution N (0, 1) has the probability density function f(x) = 1√
2π
e−

x2

2 .

Properties of the standard normal distribution: (Below, assume X is a variable following the
distribution.)

• symmetric around 0

• highly concentrated

– Pr[X ∈ [−1, 1]] ≈ 0.683

– Pr[X ∈ [−2, 2]] ≈ 0.955

– Pr[X ∈ [−3, 3]] ≈ 0.997

• expection (mean) = 0, standard deviation = 1

• The Cumulative Distribution Function (CDF)

Φ(x) = Pr[X ≤ x] =

∫ x

−∞
f(t)dt

has no closed form.

In general, we have the normal distribution N (µ, σ2) with mean µ and variance σ2.

• Probability Density Function (PDF) of N (µ, σ2):

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• Suppose X1, X2, ..., Xn are n independent variables following the standard normal distribution,
and α1, α2, ..., αn ∈ R. Then,

n∑
i=1

αiXi ∼ N

(
0,

n∑
i=1

α2
i

)
.

With normal distribution, we can choose a direction uniformly at random. First consider the
cases in 2-dimension.
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• If we choose x, y ∈ [−1, 1] independently and uniformly at random and use (x, y) as the
direction, this does not give a uniformly random direction. The up-right direction (1, 1) will
have higher density than the right direction (1, 0).

• We can choose uniformly at random θ ∼ [0, 2π) and let (x = cos θ, y = sin θ). Then this is a
uniform direction. However this approach is hard to be extended to the 3-dimensional case.

Indeed, we can choose x, y ∼ N (0, 1) independently. Then, (x,y)√
x2+y2

is a direction uniformly at

random chosen. This can be generalized to d dimensions: X1, X2, ..., Xd randomly and independently
from N (0, 1), then

(X1, X2, ..., Xd)√
X2

1 +X2
2 + ...+X2

d

is a direction chosen uniformly at random in a d-dimension space.
Also, many distributions can be approximated using normal distributions. For example, assume

each Xi, i ∈ [n] is chosen randomly from {−1, 1} and consider X =
∑n
i=1Xi. Notice that E[X] = 0

and Var[X] = n. Then, X√
n

is very close to the standard normal distribution N (0, 1).

3 Proof of JL-Theorem

We choose a matrix M ∈ Rk×d, where every entry mi,j is chosen independently from N (0, 1). Then
we define the mapping f to be:

f(a) =
Ma√
k
.

We need to show that the f satisfies the property of the theorem statement with high probability.
We fix a pair i 6= j ∈ [n], and define r = aj − ai. Then ‖r‖ denotes the distance between ai and aj .
Mr√
k

is the distance between the two points in the projected space. We now compute the expected

square length of Mr.

E[‖Mr‖2] = E

 k∑
i=1

 d∑
j=1

mijrj

2
 =

k∑
i=1

E

 d∑
j=1

mijrj

2

=

k∑
i=1

E

 d∑
j=1

d∑
j′=1

mijmij′rijrij′

 =

k∑
i=1

d∑
j=1

d∑
j′=1

rjrj′ E[mijmij′ ].

If j 6= j′, then we know E[mi,jmi,j′ ] = 0 since mi,j and mi,j′ are independent standard normal
variables. If j = j′, then E[mi,jmi,j′ ] = E[m2

i,j ] = Var(N (0, 1)) = 1. Thus, we have

E
[
‖Mr‖2

]
=
∑
i=1k

d∑
j=1

r2j = k‖r‖2.

Indeed, the above equality can be proved directly. Let Mi be the i-th row vector of M . Then Mir
will be a normal variable with mean 0 and variance

∑d
j=1 r

2
j = ‖r‖2. Thus, E[‖Mir‖2] = ‖r‖2 for

every i ∈ k and E[‖Mr‖2] = k‖r‖2.

3.1 Proof of Concentration Bound

In this section, we show

Pr[‖Mr‖2 > (1 + ε)k‖r‖2] < e−
ε2k
12 , and (1)

Pr[‖Mr‖2 < (1− ε)k‖r‖2] < e−
ε2k
12 . (2)

using the analysis similar to the proof of Chernoff bounds. If we choose k = O( logn
ε2 ) to be large

enough, then we have e−
ε2k
12 ≤ 1

2n2 . Applying union bound, with probability at least 1
2 , for every i

and j, we have
(1− ε)k‖aj − ai‖2 ≤ ‖M(aj − ai)‖2 ≤ (1 + ε)k‖aj − ai‖2.
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This will finish the proof of the JL theorem. Indeed, the proof gives a randomized algorithm to
produce the matrix M .

We only prove Inequality (1); the proof of Inequality (2) will be symmetric. For every i ∈ k, let

Xi = Mir, where Mi is the i-th row vector of M . Notice that ‖Mr‖2 =
∑k
i=1X

2
i . Let t ∈ (0, 1/2)

be any number; we have

Pr

[
k∑
i=1

X2
i > (1 + ε)k

]
= Pr

[
et

∑k
i=1X

2
i > et(1+ε)k

]
<

E
[
et

∑k
i=1X

2
i

]
et(1+ε)k

by Markov Inequality

= e−t(1+ε)k
k∏
i=1

E[etX
2
i ] by independence of Xi variables

= e−t(1+ε)k
(

1√
1− 2t

)k
this will be proved soon

=

(
1√

1− 2t · et(1+ε)

)k
.

We used that E[etX
2
i ] = 1√

1−2t . This can be proved as follows:

E[etX
2
i ] =

1√
2π

∫ +∞

−∞
e−x

2/2 · etx
2

dx =
1√
2π

∫ +∞

−∞
e(t−

1
2 )x

2

dx

=
1√
2π

∫ +∞

−∞
e−

1
2y

2 dy√
1− 2t

by letting y =
√

1− 2t · x

=
1√

1− 2t
. since

1√
2π

∫ +∞

−∞
e−

1
2y

2

dy = 1

We choose t = ε
2(1+ε) ≤

1
2 . Then,

Pr

[
k∑
i=1

X2
i > (1 + ε)k

]
≤ exp

(
−k

2
(2t(1 + ε) + ln(1− 2t))

)
= exp

(
−k

2
(ε− ln(1 + ε))

)
≤ exp

(
−k

2

(
ε− ε+

ε2

2
− ε3

3

))
≤ e−k(ε

2/2−ε3/3)/2.

Above, we used that ln(1 + ε) ≤ ε− ε2

2 + ε3

3 , which can be derived from the Taylor expansion of

ln(1 + ε). If ε < 1, then the probability is at most e−kε
2/12. This finishes the proof of Inequality (1).

4 Application of JL Theorem in Streaming Algorithms

One application of the analysis of the JL theorem is designing a streaming algorithm for estimating
the L2-norm of a vector that comes online. Let U be huge universe. Every time an element u ∈ U
comes, we need to add it to the counter fu, that indicates the frequency of u in the stream. We
want to estimate ‖f‖22 =

∑
u∈U f

2
u .

Consider the following algorithm:

1: Randomly construct a matrix M ∈ R[k]×U for some k whose value will be decided later, where
each entry is chosen independently and randomly from the normal distribution.

2: Output ‖Mf‖2
k using the following procedure: Let v ← (0, 0, 0, 0, . . . , 0)k initially. whenever u

comes, we update v ← v + Mu, where Mu is the column of M correspondent to u. Then, we
output ‖v‖2/k.
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By the analysis of the JL theorem, we can show that if choose a large enough k = O( log(1/δ)
ε2 ),

then the probability that our output is within (1 ± ε)‖f‖2 is at least 1 − δ. However, the above
algorithm does not work directly since we have to store the whole matrix M at the beginning: this
is needed to make sure that we are using the same column for the same element u.

The issue can be handled using pseudo-randomness, which is a topic beyond the scope of this
course. The idea is that we have a pseudo-random matrix generating algorithm A, which takes a
small length string s and output a matrix M . Then, in our algorithm, we randomly choose the string
s and store it in memory. Whenever we need to use Mu, we simply call the algorithm A(s) and use
the u-th columns of the output matrix (to save time, we do not need A to output all columns, just
the u-th column). In other words, we pretend that the distribution of the matrix that A outputs is
similar to the one generated using normal distributions. Psudo-randomness theory says that there
exists such an algorithm A such that an time or space restricted algorithm (including our algorithm
for estimating ‖f‖2) will not be able to distinguish between the two distributions; in other words, the
pseudo-random matrix generator A is able to “fool” our algorithm. Thus, the streaming algorithm
will have almost the same behavior as if the matrix was generated using normal distributions.
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