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1 Introduction

This lecture is about martingales. Let us start with an motivating example. Consider the following
two games that a gambler can play:

Algorithm 1 Gambler’s Game 1

1: for i← 1 to n do

2: the gambler gets a score of

{
1 with probability 1

2

−1 with probability 1
2

The gambler wins the game if the total score he get in 0.1n. Using Chernoff bounds we learned
from the last lecture, we can prove that the probability that the gambler wins the game is exponen-
tially small, i,e, at most e−cn for some constant c > 0. Now let us consider a different game, where
the gambler has some control on what he can choose in each turn:

Algorithm 2 Gambler’s Game 2

1: for i← 1 to n do
2: the gambler chooses any distribution for Xi over [−1, 1] s.t. E[Xi] = 0; the distribution may

depend on the realizations of X1, X2, · · · , Xi−1

3: the gambler gets a score of Xi, randomly selected from the distribution he chooses

Again, the gambler wins the game if the total score he gets is at least 0.1n. Now since the
gambler can choose the distributions, can he win the game with much high probability than he can
in the first game? In this lecture, we show that the answer is no. The accumulative scores he get in
the game form a martingale sequence, which is the topic of the lecture.

2 Martingale Sequence

Definition 1. A martingale sequence is a sequence Y1, Y2, · · · , Yn of random variables such that for
every i ∈ {2, 3, · · · , n}, we have E[Yi|Y1, Y2, Y3, · · · , Yi−1] = Yi−1.

A sequence Y1, Y2, · · · , Yn of random variables is called a martingale sequence with respect to
another sequence X1, X2, · · · , Xn if the following conditions hold.

1. For every i ∈ [n], Yi is completely determined by X1, X2, · · · , Xi.

2. For every i ∈ {2, 3, · · · , n}, we have E[Yi|X1, X2, · · · , Xi−1] = Yi−1.

Referring to the gambler’s game 2 above, Xi is the score we obtain in the i-th iteration. Let
Yi =

∑i
j=1Xi is the total score we obtain from iteration 1 to iteration i. Then Y1, Y2, · · · , Yn is a

martingale sequence w.r.t X1, X2, · · · , Xn since E[Yi|X1, X2, · · · , Xi−1] = X1 + X2 + · · · + Xi−1 +
E[Xi|X1, X2, · · · , Xi−1] = Yi−1 since E[Xi|X1, X2, · · · , Xi−1] = 0. This can also be used to prove
that Y1, Y2, · · · , Yn is a martingale sequence by itself.

3 Azuma’s Inequality

Theorem 2 (Azuma’s Inequality). Let Y1, Y2, · · · , Yn be a martingale sequence with respect to an-
other sequence X1, X2, · · · , Xn. Let Y0 = E[Y1]. Assume for i ∈ [n], we always have |Yi−Yi−1| ≤ ci.
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Then ∀t ≥ 0, we have:

Pr[Yn − Y0 ≥ t] ≤ exp

(
− t2

2 ·
∑n
i=1 c

2
i

)
and Pr[Yn − Y0 ≤ −t] ≤ exp

(
− t2

2 ·
∑n
i=1 c

2
i

)
.

Proof. Let λ > 0 be any number, then

Pr[Yn − Y0 ≥ t] = Pr
[
eλ(Yn−Y0) ≥ eλ·t

]
≤

E
[
eλ(Yn−Y0)

]
eλ·t

by Markov’s Inequality.

For simplicity, we let ∆n = Yn−Yn−1. Then we always have |∆n| ≤ cn. We then bound E
[
eλ(Yn−Y0)

]
as follows

E
[
eλ(Yn−Y0)

]
= E

[
eλ(Yn−1−Y0+∆n)

]
= E
X1,X2,··· ,Xn−1

[
eλ(Yn−1−Y0) E

[
eλ∆n |X1, X2, · · · , Xn−1

]]
.

E
[
eλ∆n |X1, X2, · · · , Xn−1

]
≤ E

[
(cn + ∆n)eλcn + (cn −∆n)e−λcn

2cn

∣∣∣X1, X2, · · · , Xn−1

]
=
cne

λcn + cne
−λcn

2cn
=
eλcn + e−λcn

2

The inequality is by convexity of the exponential function and that ∆n ∈ [−ci, ci]. The first equality
used that E[∆n|X1, X2, · · · , Xn−1] = E[Yn|X1, X2, · · · , Xn−1]− Yn−1 = 0.

Thus, we have

E
[
eλ∆n |X1, X2, · · · , Xn−1

]
≤ eλcn + e−λcn

2
E

X1,X2,··· ,Xn−1

[
eλ(Yn−1−Y0)|X1, X2, · · · , Xn−1

]
=
eλcn + e−λcn

2
E
[
eλ(Yn−1−Y0)

]
.

We can prove the above inequality for n−1, n−2, · · · , 1. Combining all the inequalities, we have

E
[
eλ(Yn−Y0)

]
≤

n∏
i=1

(
1

2
e−λci + eλci

)
E[eλ(Y0−Y0)] ≤

n∏
i=1

e(λci)
2/2 = exp

(
n∏
i=1

(λci)
2/2

)
.

In the above sequence, we used that ex+e−x

2 ≤ ex
2/2 for every x ∈ R. This can be seen from the

Taylor series:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
· · ·

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
· · ·

ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · ·

ex
2/2 = 1 +

x2

2
+

x4

2 · 2!
+

x6

2 · 3!
+ · · ·

If we choose λ =
t∑n
i=1 c

2
i

, then

Pr [Yn − Yn ≥ t] ≤
E
[
eλ(Yn−Y0)

]
eλt

≤
exp

(∏n
i=1(λci)

2/2
)

eλt
= exp

(
n∑
i=1

(λci)
2/2− λt

)
.

Let A =
∑n
i=1 c

2
i and λ = t

A , and the quantity on the right side is

exp

(
λ2 ·A

2
− λt

)
= exp

(
t2

2A
− t2

A

)
= exp

(
− t2

2A

)
= exp

(
− t2

2
∑n
i=1 c

2
i

)
.

This finishes the proof of the theorem.
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Then we go back to the gambler’s game 2. Then we can define c1 = c2 = · · · = cn = 1 and
t = 0.1n, then we have (notice that Y0 = 0)

Pr[Yn ≥ 0.1n] ≤ exp

(
−0.01n2

2n

)
= e−n/200.

So the probability is still exponentially small in n.

4 Doob Martingales

Theorem 3. Let A,X1, X2, . . . , Xn be random variables in a common probability space. For every
i ∈ {0, 1, 2, 3, · · · , n}, let Yi = E[A|X1, X2, . . . , Xi]. Then Y1, Y2, . . . , Yn is a martingale sequence
w.r.t X1, X2, . . . , Xn. The martingale is called is the Doob martingale for Y1, Y2, · · · , Yn.

A special but very common case is when A is completely decided by X1, X2, · · · , Xn. That is,
there is a function f such that A = f(X1, X2, · · · , Xn).

Proof of Theorem 3. First, for every i ∈ [n], Yi is completed determined by X1, . . . , Xi by the
definition. It suffices to check if E[Yi|X1, X2, . . . , Xi−1] = Yi−1 for every i ∈ {2, 3, · · · , n}.

E[Yi|X1, X2, . . . , Xi−1]

= E
Xi|X1,X2,...,Xi−1

E[Yi|X1, X2, · · · , Xi−1, Xi] Yi is deterministic conditioned on X1, · · · , Xi

= E
Xi|X1,X2,...,Xi−1

E[A|X1, X2, . . . , Xi−1, Xi]

= E[A|X1, X2, . . . , Xi−1]

= Yi−1

5 Application of Azuma’s Inequality to Lipschitz Functions

5.1 Lipschitz Property

Definition 4. A function f : (x1, x2, . . . , xn) → R is said to have Lipschitz constant ci ≥ 0 on the
i-th coordinate, if for every x1, x2, · · · , xn and x′i we have

|f(x1, x2, . . . , xn)− f(x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

Lemma 5. Let f : (x1, x2, · · · , xn)→ R be a function with Lipschitz constants c1, c2, · · · , cn on the n
coordinates. Assume X1, X2, . . . , Xn are independent random variables. Let µ = E[f(X1, X2, . . . , Xn)].
Then ∀t ≥ 0, we have

Pr[f(X1, X2, . . . , Xn)− µ ≥ t] ≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
, and

Pr[f(X1, X2, . . . , Xn)− µ ≤ −t] ≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
.

Notice that the Chernoff bounds can be applied when f =
∑n
i=1Xi. Using Azuma’s inequality,

we can prove concentration bounds for any Lipschitz function f .

Proof. For every i ∈ [n], we define Yi = E[f(X1, X2, . . . , Xn)|X1, X2, . . . , Xi] (Doob martingale).
What needs to be proved is that for every i,

|Yi − Yi−1| ≤ ci.

Fix X1, X2, · · · , Xi, we have from the definition of Y -variables and the independence of X variables

Yi = E
Xi+1,Xi+2,...,Xn

[f(X1, X2, . . . , Xn)]

Yi−1 = E
X′i,Xi+1,Xi+2,...,Xn

[f(X1, X2, Xi−1, X
′
i, Xi+1, Xn)]
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Above, X ′i is a random variable that has the same distribution as Xi. Notice that since we already
fixed Xi, we need to use X ′i in the definition of Yi−1. Thus,

Yi − Yi−1 = E
Xi+1,Xi+2,...,Xn

[f(X1, X2, . . . , Xn)]

− E
X′i,Xi+1,Xi+2,...,Xn

[f(X1, X2, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)]

= E
X′i,Xi+1,...,Xn

[f(X1, X2, . . . , Xn)− f(X1, . . . , Xi−1, Xi′ , Xi+1, . . . , Xn)]

Notice that the quantity inside E[] is always between −ci and ci, we have |Yi − Yi−1| ≤ ci.
Additionally,

• Y0 = E[f(X1, X2, . . . , Xn)] = µ

• Yn = E[f(X1, X2, . . . , Xn)|X1, X2, . . . , Xn] = f(X1, X2, . . . , Xn)

The difference between Yn and µ is f(X1, X2, . . . , Xn)−µ, which is a function of X1, X2, . . . , Xn.
Then, applying the Azuma’s inequality, Lemma 5 is proved.

6 Examples

6.1 Bin Packing of Items of Random Sizes

Let X1, X2, . . . , Xn be independent random variables from [0, 1] (they do not necessarily have the
same distribution). Let f(X1, X2, . . . , Xn) be the minimum number of boxes of capacity 1 to hold
the n items of sizes X1, X2, . . . , Xn respectively.

Observation 6. For every i ∈ [n], x1, x2, · · · , xn and x′i, we have

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ 1.

Let µ = E[f(X1, X2, . . . , Xn)]. Applying Lemma 5, we have

Lemma 7. ∀t ≥ 0, Pr[f(X1, X2, . . . , Xn)− µ > t] ≤ exp(− t2

2n ).

The problem of computing f(x1, x2, . . . , xn) is actually a NP-hard problem, but Lemma 7 always
holds.

6.2 Chromatic Number of Random Graphs

Suppose we have a graph G ∼ G(n, p) which means that we have n vertices in G and each edge is
present with probability p independently. Indeed, the analysis in the section works even if edges
have different probabilities of being present in G, as long as the events are independent.

Let f(G) be the minimum number of colors to color the vertices of G, s.t. there are not two
adjacent vertices having the same color. (Vertex Coloring Problem).

First we define Xi to be the set of edges in G between i and {1, 2, . . . , i− 1}
• X1: φ

• X2: the set of edges between 2 and {1}
• X3: the set of edges between 3 and {1, 2}
• . . .

Then, G = (V,X1∪X2∪X3 · · ·Xn), so G and f(G) are determined by X1, X2, · · · , Xn. We define
Yi = E[f(G)|X1, X2, . . . , Xi]. i.e., given X1, X2, . . . , Xi, then Yi is computed by the expectation of
f(G) with sampling Xi+1, Xi+2, . . . , Xn.

And we have:

Observation 8. |f(G(X1, X2, . . . , Xn))− f(G(X1, X2, . . . , Xi−1, X
′
i, Xi+1 . . . , Xn))| ≤ 1.

I.e, any changes toXi will at most increase one color, because given a coloring forG(X1, X2, . . . , Xn),
can always use a new color for i ot obtain a coloring for G(X1, X2, · · · , Xi−1, X

′
i, Xi+1, · · · , Xn).

Then as the Section 6.1, we can have the bound that

Pr[f(G)− µ ≥ t] ≤ exp

(
− t

2

2n

)
.
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