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1 Markov Chains

Markov chains can be used to model dynamic systems such as Brownian motion, market trends
(which can be treated as random processes) and languages (which is more “deterministic”). A state
diagram is a directed graph where each nodes correspond to a possible state of the system and
arcs give the possible transitions among those states. Then intuitively, a (discrete-time finite space)
Markov chain can be viewed as a state diagram with probabilities on the edges : a weight p(u,v) on
the edge (u, v) indicates the probability that we transit to state v, given that we are currently at
state u. See Figure 1 for two examples. From the definition of weights on edges, we have
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(a) Traffic light system. The traffic light can
change from red to green, green to yellow and
yellow to red. Each transition edge has weight 1,
indicating that the transitions among states are
deterministic.
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(b) An abstract state diagram. The transitions
among states are random. For example, if the
system is currently at state b, then with prob-
ability 1/2, the state will be changed to a, and
with probability 1/2 it will be changed to c.

Figure 1: Two Examples of Markov Chains. Weights on the edges denote the transition probabilities.

Observation 1. In a state diagram for a Markov Chian, all weights are non-negative and the sum
of weights for all outgoing edges of a state is 1.

1.1 Formal Definition

To formally define a Markov chain, we need to define a stochastic process first.

Definition 2 (Stochastic Processes). Let T be a set denoting the times. Then a stochastic process
is a family of random variables {Xt : t ∈ T}, one for each time t ∈ T . If T is discrete, we say the
process has a discrete time. If all Xt’s can take values from a discrete space, then we say the process
has a discrete space.

Definition 3 (Markov Chains). A discrete time stochastic process X = (X0, X1, . . . ) is called a
(discrete time) Markov chain if for every t ≥ 1 and a0, a1, . . . , at, we have

Pr[Xt = at|Xt−1 = at−1, Xt−2 = at−2, . . . , X0 = a0] = Pr[Xt = at|Xt−1 = at−1]

I.e., for every at−1, conditioned on Xt−1 = at−1, Xt is independent of Xt−2, Xt−3, . . . , X0. But
does that mean Xt and Xt−2 are independent? No. If we do not condition on a specific value of
Xt−1, Xt and Xt−2 may be dependent.

Compare this with the definition of Martingales. They both have a sequence of random variables;
also, conditioned on X1, X2, · · · , Xt−1, some property of the random variable Xt only depends on
Xt−1:
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• For a Markov Chain, the distribution for Xt only depends on Xt−1.

• For a Martingale, the distribution for Xt may depend on X1, X2, · · · , Xt−2, even if Xt−1 is
fixed. However, we always have that expected value of Xt is Xt−1.

On the other hand, in a Markov Chain, the expectation of random variables may not be defined. Con-
sider the traffic light example, where a random variable has its value in {“red”, “green”, “yellow”}.
Even if the expectation is defined, we may not have E[Xt|X1, X2, · · · , Xt−1] = Xt−1.

In the course, we only focus on discrete time finite space Markov chains that are time-homogeneous,
defined as follows.

Definition 4 (Time Homogeneous Markov Chains). A Markov chain is time-homogeneous if for
every t ≥ 0, x, y, we have

Pr[Xt = x|Xt−1 = y] = Pr[Xt+1 = x|Xt = y].

1.2 Transition Matrix

Definition 5. Given a (discrete time finite space time-homogeneous) Markov chain, we define its
transition matrix P to be a matrix with rows and columns indexed by the values (or states) in the
space of the random variables such that

Pi,j = Pr[Xt = j|Xt−1 = i] ∀t, i, j.

(1) is the transition matrix for the Markov Chain in Figure (1b).

a b c d



a 1 0 0 0

b 1
2 0 1

2 0

c 0 1
4 0 3

4

d 1
3

1
3

1
3 0

(1)

Notice that a transition matrix is a “row-stochastic matrix”, which is a matrix satisfying the following
properties:

• every entry is non-negative, and

• every row sum is 1.

We know Pr[X1 = b|X0 = c] is 1/4. From the matrix, we can also compute a two-step transition
probability. For example,

Pr[X2 = d|X0 = b] =
∑
i

Pr[X1 = i|X0 = b] Pr[X2 = d|X1 = i,X0 = b]

=
∑
i

Pr[X1 = i|X0 = b] Pr[X2 = d|X1 = i] by defintion of Markov Chains

=
1

2
× 3

4
=

3

8
.

The probabilities can be represented more concisely as follows. Let π(t) be the row vector for

the probabilities of distribution Xt. That is π
(t)
a = Pr[Xt = a] for every a. Then we have

Lemma 6. Let P the transition matrix for a Markov Chain, and π(t) be the row vector for the
probabilities of distribution Xt. Then for every t ≥ 1, we have π(t) = π(t−1)P .
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Proof.

π
(t)
j = Pr[Xt = j]

=
∑
i

Pr[Xt−1 = i] Pr[Xt = j|Xt−1 = i]

=
∑
i

π
(t−1)
i Pi,j

= π(t−1) P?,j︸︷︷︸
j-th column

So, π(t) = π(t−1)P .

Applying the lemma repeatedly we have

Lemma 7. For every t ≥ 0 and m ≥ 1, we have π(t+m) = π(t)Pm.

2 Example: Another Gambler’s Game

Consider the following game that a gambler plays in a casino. Initially, he has a dollars. He pays
1 dollar for each round. Then he will get 2 dollars back with probability 1/2 (with the remaining
1/2 probability, he will not get anything back). The gambler leaves the casino when either he losses
all his money, or he has b dollars in his pocket, where b > a is some integer. The gambler loses the
whole game in the former case, and wins the game in the latter. We are interested in the probability
that the gambler wins the game. We prove the following lemma

Lemma 8. Pr[“Win”] = a
b and Pr[“Lose”] = 1− a

b .

Proof. We define a Markov chain as follows. Let Xt be the amount of money the gambler has after
t rounds. Initially we have X0 = a. For every t← 1, 2, 3, . . . , conditioned on 1 ≤ Xt−1 ≤ b− 1, we
have

Xt =

{
Xt−1 + 1 with probability 1

2

Xt−1 − 1 with probability 1
2

.

The game will be ended if at some time T we have XT = 0 or XT = b. The gambler wins the game
if XT = b and loses the game otherwise. For simplicity, if a game ends at time T , for every t′ > T
we assume Xt′ = XT . We can draw the state diagram (or the transition graph) as Figure 2 and
have the transition matrix as (2).
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Figure 2: State Diagram (or Transition Graph) for Gambler’s Game
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
(2)

We give two ways to prove the lemma. The first method is by solving a system of linear equations.
Let us define Pi to be the probability of wining conditioned on that we are currently at state i
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(meaning the gambler has i dollars), where i is an integer between 0 and b. Then we have

P0 = 0

Pb = 1

Pi =
1

2
Pi−1 +

1

2
Pi+1 ∀i = 1, 2, 3, · · · , b− 1

To see the third equality, we know that the probability that the next state will be i − 1 with
probability 1/2 and i + 1 with probability 1/2. Notice that the definition of Pj ’s is independent of
the time. Thus, the equality holds.

The third equality is equivalent to 2Pi = Pi−1 + Pi+1, which is P1 − Pi−1 = Pi+1 − Pi. Thus,
we have that P0, P1, P2, · · · , Pb form an arithmetic progression. Thus, Pi = i

b . That is, we have
Pr[“Win”] = a

b and Pr[“Lose”] = 1− a
b .

Now we consider the second method. Without a formal proof, we make the following claim: the

probability that the game will end in finite number of rounds is 1. Let π
(t)
i be the probability that

we are in state i at time t. Then mathematically, this means limt→∞
(
π
(t)
0 + π

(t)
b

)
= 1. It is easy to

see that the sequence (X0, X1, X2, · · · , ) also forms a martingale, we have E[Xt] = X0 = a for every
t. Thus,

a = lim
t→∞

E[Xt] = lim
t→∞

b∑
i=0

π
(t)
i · i =

b∑
i=0

i · lim
t→∞

π
(t)
i = 0 · Pr[lose] + b · Pr[win].

Thus, we have Pr[win] = a/b and Pr[lose] = 1− a/b. Above we used that limt→∞ π
(t)
i = 0 for every

i ∈ {1, 2, · · · , b− 1},Pr[win] = limt→∞ π
(t)
b and Pr[lose] = limt→∞ π

(t)
0 .
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