
CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 18 (10/25/2019): Random walk and 2-SAT problem
Lecturer: Shi Li Scriber: Chen Xu

1 Random walk on a line

Last lecture we see the example of the gambler’s problem that can be modeled by a Markov Chain.
Now consider a Markov Chain of n nodes, and we are interested in the expected number of iterations
for the game to terminate i.e. the expected number of iterations it takes from node 0 to node n.
The transition is described as follows:

1: X0 ← 0
2: for t ∈ 0, 1, 2, ... do
3: if Xt = 0 then Xt+1 ← 1
4: else if Xt = n then stop

5: else Xt+1 =

{
Xt−1 with probability 1/2

Xt+1 with probability 1/2

Figure 1: Markov Chain for the random walk problem

We have the following lemma:

Lemma 1. Let T the number of steps the game takes to end (T is a random variable). Then we
have E[T ] = n2.

Proof. For every i ∈ {0, 1, 2, · · · , n2}, let hi = E[number of steps the game takes if start with X0 = i].
Then we have hn = 0, h0 = h1 + 1, and for every other i in the set, we have

hi =
hi−1

2
+

hi+1

2
+ 1 (1)

We then argue about the above equality. If X0 = i, then Pr[X1 = i − 1] = Pr[X1 = i + 1] = 1
2 .

Then conditioned on X1 = i − 1 (X1 = i + 1), the game takes hi+1 (hi−1) more steps to end in

expectation. Taking the first step into consideration, we have hi = hi−1

2 + hi+1

2 + 1.
Transform (1) we get:

(hi − hi+1)− (hi−1 − hi) = 2

Let ∆i = hi − hi+1, we have ∆0 = 1, ∆i − ∆i−1 = 2 for every i = 1, 2, 3, · · · , n − 1. Then
∆i = 2i + 1 for every i = 1, 2, 3, · · · , n− 1.

h0 = (h0 − h1) + (h1 − h2) + · · ·+ (hn−1 − hn) =

n−1∑
i=1

∆i = 1 + 3 + ... + (2n− 1) = n2.

2 Randomized Algorithm for 2-SAT

We introduce the following notations first. Denote n boolean variables as x1, x2, ..., xn. For each
boolean variable xi and its negation ¬xi we call them literals. A clause is the OR of two literals
i.e. xi ∨ xj , xi ∨ ¬xj , ¬xi ∨ ¬xj . A 2-SAT formula is the AND of many clauses. For example
(x1∨x2)∧ (x2∨¬x3)∧ (x1∨¬x2)∧ (¬x1∨¬x3) and (x1∨x2)∧ (x1∨¬x2)∧ (¬x1∨x2)∧ (¬x1∨¬x2)
are 2-SAT formulas.

1



The 2-SAT problem is to check if there exists an assignment x ∈ {0, 1}n of {0, 1}-values (0 for
‘false’ and 1 for ‘true’) to variables s.t. the formula is satisfied, which is equivalent to that all
the clauses are satisfied, which is equivalent to that every clause has one satisfied literal. In the
above examples, the former is satisfiable and has a truth assignment of (1, 1, 0) while the latter is
unsatisfiable.

The randomized algorithm is stated as follows:

1: Let x ∈ {0, 1}n be an arbitrary assignment of the boolean variables
2: if all clauses are satisfied then return true
3: counter = 0
4: for t← 1 to 2mn2 do
5: choose some clause c is not satisfied arbitrarily
6: choose one of the two literals of c randomly
7: flip the variable for the literal in assignment x
8: if all clauses are satisfied then return true
9: return false

2.1 Correctness

If the boolean formula is unsatisfiable the algorithm will never return true. If the boolean formula
is satisfiable the algorithm will output false with some probability. Let us focus on a satisfiable
instance. x∗ be a satisfying assignment for the formula. Let Yt be a random variable for the number
of agreeing variables at the end of time step t (a variable is agreeing if xi = x∗

i ). We fix Yt and
consider the distribution for Yt+1. There can be two cases:

• Case 1: if exactly one of the two variables in c is disagreeing, then we have

Yt+1 =

{
Yt − 1 with probability 1/2

Yt + 1 with probability 1/2

• Case 2: if both variables are disagreeing, then

Yt+1 = Yt + 1

We algorithm will succeed if for some t, Yt becomes n. (The algorithm may succeed at t even if
Yt < n since there might be some other satisfying assignments.) The expected number of steps for
the algorithm to succeed is at most the expected number of steps for the game walk to end in the
last section. Indeed, our algorithm has advantages in the following 3 aspects, but we use the random
walk game to upper bound the expected number of steps for the algorithm to succeed.

• Initially, we may have Y0 > 0; but the random walk game has X0 = 0.

• In case 2 above, we may have Yt+1 = Yt + 1.

• As we argued, the algorithm can succeed even if we have not reached n.

Thus, in expectation, our algorithm will find a satisfying assignment in at most n2 time steps.
We divide the algorithm in to m phases, each containing 2n2 iterations. By Markov’s inequality,
the probability that the algorithm does not succeed in one phase is at least 1/2. So, overall, the
probability that the algorithm succeeds is at least 1− (1/2)m.

2


