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1 3-SAT

In the last lecture, we talked about the randomized algorithm for 2-SAT using the analysis for the
random walk on a line. In this lecture, we talk about randomized algorithm for 3-SAT algorithms.
The 3-SAT problem is the same as 2-SAT, except that each clause contains 3 literals. Unlike 2-SAT,
which is a problem in P , the 3-SAT problem is NP-complete and thus it is unlikely that it can
be solved in polynomial time. Indeed, there is a conjecture stating that it can not be solved in
sub-exponential time:

Hypothesis 1 (Exponential Time Hypothesis (ETH)). 3-SAT can not be solved in time 2o(n)poly(n,m)
time algorithm, where n and m are the number of variables and clauses in the instance respectively.

A trivial algorithm to solve 3-SAT, is to enumerate all the 2n assignment of variables, then check
if formula is satisfied. Runtime for this trivial algorithm: O(2n × mm)O(2npoly(n,m)). In the
lecture we shall give a randomized algorithm that runs in time O((4/3)npoly(n,m)), suggesting that
we can improve the constant in base of the exponential function. However, the ETH states that
this is the only type of improvements we can get: It does not contradict ETH that there exists a
1.001npoly(n,m)-time algorithm, but an algorithm with running time 2n

0.99

poly(n,m) does.

2 Randomized Algorithm for 3-SAT

The randomized algorithm works as follows:
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iterations do

2: randomly generate an assignment of {0, 1} values to the n varaibles
3: for up to 3n time steps, terminating if all clauses are satisfied do
4: pick an arbitrary clause c that is not satisfied by the assignment x
5: randomly choose 1 of 3 variables in the clause and flip its x value

6: if all clauses are satisfied then return true
7: return false

2.1 Correctness Analysis and success probability

If the instance is unsatisfiable, then our algorithm always returns false since it returns true only if
we found an satisfying assignment x. On the other hand, if the instance is satsifiable, the algorithm
may return false as it may fail to find a satisfying assignment. So, the algorithm may return a false
negative, but not a false positive. Our goal is then to show that the probability that the algorithm
returns false is small, assuming that the instance is satisfiable.

To the end of the analysis, we fix a satisfying assignment x∗ for the instance. We fix an iteration
of the outer-loop and analyze its success probability. As in the analysis of 2-SAT, we let Yt be the
number of variables where xi = x∗i after t time steps of the inner loop.

First, Y0 follows the binomial distribution with parameters n and 1/2. That is, the probability
that Y0 = i is

(
n
i

)
/2n for every i ∈ [0, n]. Let us t ≥ 0 and Y0, Y1, · · · , Yt. Then, Yt+1 is either Yt− 1

or Yt + 1. Moreover, we have

Yt+1 =

{
Yt − 1 with probability at most 2/3

Yt + 1 with probability at least 1/3
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This holds since every time we choose an unsatisfied clause c and flip one of the 3 variables in c
uniformly at random. Since x∗ is a satisfying assingment, c is satisfied by x∗. Thus, at least one
of the three variables have different x and x∗ values. Also, the iteration will terminate successfully
if for some t we have Yt = n (the iteration may terminate earlier since there might be satisfying
assignments other than x∗).

Thus, the success probability of an iteration is at least the probability that the following procedure
returns “success”:

1: Choose Y0 randomly from the binomial distribution with parameters n and 1/2
2: for t← 1 to 3n do
3: with probability 1/3 let Yt ← Yt−1 + 1 (we choose “right”)

and with the remaining probability 2/3, let Yt ← Yt−1 − 1 (we choose “left”)

4: return “success” if Yt = n for some t ∈ [0, 3n] and “failure” otherwise

Let us condition on the even that Y0 = n − j for some integer j ∈ [0, n]. Then the probability
that the above procedure returns success is at least the probability that in j out of the first 3j steps,
we choose “right” and in the remaining 2j steps we choose “left”. The probability is(
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To obtain an acurate estimate of the term, we approximate the binormial coefficient using Stir-
ling’s approximaton for factorials:
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whereas α =
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e2 is an absolute constant.

Then we consider all possible values that Y0 can take, the probability that an iteration of the
outer loop is successful with probability at least
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One iteration of the outer loop fails with probability at most 1 − α√
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iterations all fail with probability at most e−3 < 0.1. Thus the

algorithm succeeds with probability at least 0.9. By increasing the number of iterations of the outer
loop by a factor of logn, the success probability can be increased to 1− 1/n2.

Remark on Two Different Markov Chains on a Line Consider the following Markov chain
on a line. We start from Y0 = 0. For each t = 1, 2, 3, · · · , we let Yt = Yt−1 − 1 with probability p
and Yt = Yt−1 + 1 with probability 1 − p. There are two terminating thresholds −A and B where
A,B > 0 are integers: When Yt = −A for some t the procedure terminates and we say the player
A wins the game; when Yt = B for some t the procedure also terminates and we say the player B
wins the game.

We consider two different settings for the Markov Chain:

1. p = 1/2, A = n and B = 2n where n is a parameter that tends to ∞. This game is in favor of
A in the sense that the terminal A is closer to the starting point than that for B. In this case
we can show that the probability that A wins the game is exactly 2/3, which is independent
on n.
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2. p = 2/3, A = B = n where n is a parameter that tends to ∞. This game is again in favor of
A since the probabilities of going left and right are biased towards A. In this case, however,
the probability that A wins the game is much larger than that of B winning the game. Using
Chernoff bounds, we can show that the probability that B wins the game is exponentially
small in n.
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