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1 Random Walk on a Graph

In the last two lectures, we talked about 2-SAT and 3-SAT. The analysis of the algorithms are based
on random walks on a line, although we did not make the definition formal. In this lecture, we give
some basic definitions related to random walks on undirected graphs.

Let G = (V,E) be a undirected graph. For every v ∈ V , we let dv be the degree of v in G. In the
random walk in G, we can think of that there is a particle moving among vertices V of G in discrete
time steps. If the particle is at position v ∈ V at time t, then at time t+ 1, it will be at a random
chosen neighbor u of v. Thus, the transition matrix of the Markov chain is defined as D−1A where
A is the adjacency matrix of G, and

D =


dv1

dv2
dv3

. . .

dvn


is the diagonal matrix containing the degrees of the n vertices. In the lecture we assume the graph
does not have self-loops and parallel edges, and every vertex has degree at least 1.

1.1 Stationary Distributions

Definition 1 (Stationary Distribution). For a Markov chain with transition matrix P , a stationary
distribution π is one such that πP = π.

In other words, if we start from an stationary distribution π at time 0, then the distribution
of states for any time t ≥ 0 in the Markov chain is π. For a general Markov chain, a stationary
distribution can be computed using the following linear program:

πP = π,
∑
v

πv = 1, πv ≥ 0,∀v.

Lemma 2. For a random walk in a graph G = (V,E), the following distribution π is a stationary
distribution:

πv =
dv
2m

, for every v ∈ V,

where m = |E| is the number of edges.

For example, consider the graph with the following adjacent matrix A and transition matrix P :

A =

a b c d e


a 0 1 1 1 0
b 1 0 1 0 1
c 1 1 0 1 0
d 1 0 1 0 1
e 0 1 0 1 0

, P =

a b c d e


a 0 1/3 1/3 1/3 0
b 1/3 0 1/3 0 1/3
c 1/3 1/3 0 1/3 0
d 1/3 0 1/3 0 1/3
e 0 1/2 0 1/2 0

A stationary distribution will be
(

3
14 ,

3
14 ,

3
14 ,

3
14 ,

2
14

)
.
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Proof of Lemma 2. Let P = D−1A be the transition matrix of the random walk. Then for every
v ∈ V , we have (πP )v = (πD−1A)v =

∑
u∼v

1
du
πu =

∑
u∼v

1
du

du

2m =
∑

u∼v
1

2m = dv

2m = πv.

We state the following lemma without giving a proof:

Lemma 3. The station distribution for the random walk in G is unique if and only if G is connected.

Moreover, if further we have that G is non-bipartite, then a random walk in G will converge to
its stationary distribution.

Lemma 4. Let G = (V,E) be connected and non-bipartite graph and P be the transition matrix of
the random walk on G. Then a random walk in G converges to the stationary distribution. Formally,
for every initial distribution π′, and every v ∈ V , we have

lim
t→∞

(π′P t)v =
dv
2m

.

We remark that in the above definition, the graph G being non-bipartite is necessary. Consider
the following graph and we start from the distribution π = [1, 0, 0, 0]. Then the graph will never
reach stationary distribution since the random walk will be “periodic”.

a b c d
time 0 1 0 0 0
time 1 0 1/2 0 1/2
time 2 1/2 0 1/2 0
time 3 0 1/2 0 1/2
time 4 1/2 0 1/2 0

· · ·

1.2 Hitting time and Covering Times

Below we assume we are given a connected graph G = (V,E) and we consider a random walk on G.

Definition 5. Let u, v ∈ V , the hitting timeHu,v from u to v is defined as the expected number of
steps we need to visit v if we start the random walk from u. The commute time Cu,v from u to v is
the expected number of steps the random walk from u takes to visit u and then come back to v.

It is easy to see that Cu,v = Hu,v +Hv,u for every u, v ∈ V .

Definition 6. For every u ∈ V , the covering time Cu is defined as the expected number of steps
it takes for a random walk from u to visit all verticies in V . The covering time of the graph G is
defined as CG := maxu∈V Cu.

Theorem 7. If G is connected, then the covering time CG ≤ 2m(n− 1).

The proof of the theorem is left as an exercise. The upper bound is indeed tight, as can be seen
from a random walk on a line of n points. As we already showed, the expected number of steps it
takes for a random walk from one end point of the path to visit the other end point is n2.
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1.3 s-t-connectivity using O(log n) space

Now we are concerned with the problem of solving the s-t connectivity using O(log n) space. We
are given a graph G = (V,E) and s, t ∈ V . The input is stored in a read-only memory. We need to
decide if there is a path from s to t in G using only O(log n) extra number of bits. In this lecture,
we show a randomized algorithm that achieves this goal, which is based on random walk:

Algorithm 1 s-t-connectivity using O(log n) space

1: let v ← s
2: for up to 10mn times do
3: let v be a random neighbor of v

4: return true if v = t in some step of the random walk and false otherwise.

Notice that if s and t are disconnected in G, then our algorithm will always return false. Now
assume s and t are connected in G. Then, the expected number of steps for the random walk to
visit all verticies (which contains t) contained in the connected component of G containing s is at
most 2m(n − 1) ≤ 2mn. Thus, by Markov inequality, the probability that this did not happen in
10mn steps is at most 1/5. Thus the success probability of the algorithm is at least 1− 1

5 = 4
5 . We

can repeat the procedure multiple times to boost the success probability.
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