CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms Lecture 20 $(11/1/2019)$: Random Walk on a Graph

```
Lecturer: Shi Li Scriber: Yifu Yin
```
1 Random Walk on a Graph

In the last two lectures, we talked about 2-SAT and 3-SAT. The analysis of the algorithms are based on random walks on a line, although we did not make the definition formal. In this lecture, we give some basic definitions related to random walks on undirected graphs.

Let $G = (V, E)$ be a undirected graph. For every $v \in V$, we let d_v be the degree of v in G. In the random walk in G , we can think of that there is a particle moving among vertices V of G in discrete time steps. If the particle is at position $v \in V$ at time t, then at time $t + 1$, it will be at a random chosen neighbor u of v. Thus, the transition matrix of the Markov chain is defined as $D^{-1}A$ where A is the adjacency matrix of G, and

$$
D = \begin{pmatrix} d_{v_1} & & & & \\ & d_{v_2} & & & \\ & & d_{v_3} & & \\ & & & \ddots & \\ & & & & d_{v_n} \end{pmatrix}
$$

is the diagonal matrix containing the degrees of the n vertices. In the lecture we assume the graph does not have self-loops and parallel edges, and every vertex has degree at least 1.

1.1 Stationary Distributions

Definition 1 (Stationary Distribution). For a Markov chain with transition matrix P, a stationary distribution π is one such that $\pi P = \pi$.

In other words, if we start from an stationary distribution π at time 0, then the distribution of states for any time $t \geq 0$ in the Markov chain is π . For a general Markov chain, a stationary distribution can be computed using the following linear program:

$$
\pi P = \pi, \quad \sum_{v} \pi_v = 1, \quad \pi_v \ge 0, \forall v.
$$

Lemma 2. For a random walk in a graph $G = (V, E)$, the following distribution π is a stationary distribution:

$$
\pi_v = \frac{d_v}{2m}, \text{for every } v \in V,
$$

where $m = |E|$ is the number of edges.

For example, consider the graph with the following adjacent matrix A and transition matrix P:

A stationary distribution will be $(\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{2}{14})$.

Proof of Lemma 2. Let $P = D^{-1}A$ be the transition matrix of the random walk. Then for every $v \in V$, we have $(\pi P)_v = (\pi D^{-1}A)_v = \sum_{u \sim v} \frac{1}{d_u} \pi_u = \sum_{u \sim v} \frac{1}{d_u} \frac{d_u}{2m} = \sum_{u \sim v} \frac{1}{2m} = \frac{d_v}{2m} = \pi_v$. \Box

We state the following lemma without giving a proof:

Lemma 3. The station distribution for the random walk in G is unique if and only if G is connected.

Moreover, if further we have that G is non-bipartite, then a random walk in G will converge to its stationary distribution.

Lemma 4. Let $G = (V, E)$ be connected and non-bipartite graph and P be the transition matrix of the random walk on G. Then a random walk in G converges to the stationary distribution. Formally, for every initial distribution π' , and every $v \in V$, we have

$$
\lim_{t \to \infty} (\pi' P^t)_v = \frac{d_v}{2m}.
$$

We remark that in the above definition, the graph G being non-bipartite is necessary. Consider the following graph and we start from the distribution $\pi = [1, 0, 0, 0]$. Then the graph will never reach stationary distribution since the random walk will be "periodic".

1.2 Hitting time and Covering Times

Below we assume we are given a connected graph $G = (V, E)$ and we consider a random walk on G.

Definition 5. Let $u, v \in V$, the hitting timeH_{u,v} from u to v is defined as the expected number of steps we need to visit v if we start the random walk from u. The commute time $C_{u,v}$ from u to v is the expected number of steps the random walk from u takes to visit u and then come back to v .

It is easy to see that $C_{u,v} = H_{u,v} + H_{v,u}$ for every $u, v \in V$.

Definition 6. For every $u \in V$, the covering time C_u is defined as the expected number of steps it takes for a random walk from u to visit all verticies in V . The covering time of the graph G is defined as $C_G := \max_{u \in V} C_u$.

Theorem 7. If G is connected, then the covering time $C_G \leq 2m(n-1)$.

The proof of the theorem is left as an exercise. The upper bound is indeed tight, as can be seen from a random walk on a line of n points. As we already showed, the expected number of steps it takes for a random walk from one end point of the path to visit the other end point is n^2 .

1.3 s-t-connectivity using $O(\log n)$ space

Now we are concerned with the problem of solving the s-t connectivity using $O(\log n)$ space. We are given a graph $G = (V, E)$ and $s, t \in V$. The input is stored in a *read-only* memory. We need to decide if there is a path from s to t in G using only $O(\log n)$ extra number of bits. In this lecture, we show a randomized algorithm that achieves this goal, which is based on random walk:

1: let $v \leftarrow s$

2: for up to 10mn times do

3: let v be a random neighbor of v

4: **return** true if $v = t$ in some step of the random walk and false otherwise.

Notice that if s and t are disconnected in G , then our algorithm will always return false. Now assume s and t are connected in G . Then, the expected number of steps for the random walk to visit all verticies (which contains t) contained in the connected component of G containing s is at most $2m(n-1) \leq 2mn$. Thus, by Markov inequality, the probability that this did not happen in $10mn$ steps is at most 1/5. Thus the success probability of the algorithm is at least $1-\frac{1}{5}=\frac{4}{5}$. We can repeat the procedure multiple times to boost the success probability.