
CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 21 (11/6/2019): Multiplicative Weight Update
Lecturer: Shi Li Scriber: Chen Xu, Hao Shi

1 Main Framework

We have n experts making predictions about if a stock index is going up or down each day (Let us
use 0/1 for down/up). At day t, our algorithm make a prediction after seeing the predictions of the
n experts about day 1 to t and the actual trend of the stock index from day 1 to day t−1. After the
the experts and our algorithm made the predictions, the actual outcome for day t is then revealed.
That is, the order of steps in the framework is as follows:

1: for i← 1 to T do
2: n experts make predictions about the outcome for day t
3: algorithm makes a prediction
4: outcome for day t is revealed

Let m∗ be the number of mistakes made by the best expert, m be the number of mistakes made
by the algorithm after T days. The goal is to make m not too big compared to m∗.

Simpler case Consider there is one expert that never make mistakes, namely, m∗ = 0. We have
an algorithm for this simpler model. We main a set S of experts who never made a mistake and
everyday we use the majority prediction of over all experts in S. When the algorithm makes a
mistake, the |S| will decrease by a factor of 1

2 . The number of mistakes is m ≤ log n.

General case Now we consider the more general case where there is no perfect expert. We have
a weighted majority algorithm:

1: Initialize w1 = w2 = ... = wn = 1
2: for t← 1 to T do
3: if total weight of experts predicting 0 ≥ total weight of experts predicting 1 then
4: predict 0
5: else
6: predict 1

7: for every expert i who made a mistake wi ← wi/2.

Now we analyze the algorithm. Let wti be the weight of expert i after time t. Let Φt =
∑n
i=1 w

t
i .

Whenever we made a mistake in day t, we then have Φt ≤ 3
4Φt−1 because we reduced the minority

weight (which accounts for at most 1/2 fraction of the total weight) by a factor of 1/2. Moreover,
we have ΦT ≥ 1

2m∗
because this is the weight of the best expert at step T . Thus we have

m ≤ log 4
3

n

1/2m∗
= (log 4

3
2)(log n+m∗) ≤ 2.4(log n+m∗).

Now assume that the multiplicative constant we choose is (1− ε) instead of 1
2 . We have

m ≤ log 1
1−ε/2

n

(1− ε)m∗
=
(

log 1
1−ε/2

2
)

log n+

(
log 1

1−ε/2

1

1− ε

)
m∗.

Notice that

log 1
1−ε/2

2 =
1

log2
1

1−ε/2
=

1

(log2 e) ln (1
1−ε/2)

= Θ

(
1

ε

)
.

1

and

log 1
1−ε/2

1

1− ε
=

ln 1
1−ε

ln 1
1−ε/2

≤ ε+O(ε2)

ε/2
≤ 2 +O(ε).

So

m ≤ O
(

log n

ε

)
+ (2 +O(ε))m∗.

The following example shows that a multiplicative factor of 2 is the best we can do for deter-
ministic algorithms. Suppose we we have only n = 2 experts and the predictions of them are always
different. The first day we take prediction from expert 1, who makes a mistake. The weight of
expert 1 decreases therefore the second day we will pick expert 2. Then expert 2 is wrong in day 2.
The next day we will pick expert 1 again, who makes a mistake. This keeps going on, and expert
makes T/2 mistakes but our algorithm makes T mistakes.

2 Randomized Multiplicative Weight Update Algorithm

The multiplicative factor of 2 can be improved via randomized algorithms. Instead of using the
majority vote, we make our prediction randomly, so that the probability that we make the majority
(resp. minority) prediction is exactly the total relative weight of majority experts. The algorithm
is given as follows:

1: initialize w1 = w2 = ... = wn = 1
2: for t← 1 to T do
3: randomly choose an expert i ∈ [n], such that i is chosen with probability wi

Φ , where Φ =∑n
i′=1 wi′ .

4: follow the expert i
5: for every expert i′ who made a mistake wi′ ← e−εwi′

Before we analyze the above algorithm, we now make some modifications and at the same time
make the framework slightly more general. Firstly, instead of obtaining a random expert i in Step
3, we simply define a distribution for all the experts, without giving an actual realization of i. This
will be sufficient for the analysis and all the applications we will see. Secondly, the prediction of an
expert does not need to be 0/1; it can be anything. If we follow the expert i in day t, then whether
we make mistake in day t is the same as whether i makes a mistake in day t. Thus, in this new
framework, the predictions do not matter any more. Finally, we can generalize the framework so
that the number of mistakes an expert makes at any time t is not necessarily 0 or 1, but any real
number in [−ρ, ρ]. So, instead of using the number of mistakes, we use the word “penalty”. At any
time, the penality for expert i is between −ρ and ρ. When the penality is negative, we think of it
as a “reward”.

With this new framework, we can now reformulate our algorithm as follows:

Algorithm 1 Multiplicative Weight Update Method

1: initialize w1 = w2 = ... = wn = 1
2: for t← 1 to T do
3: follow the distribution w

Φ , where w = (w1, w2, · · · , wn) and Φ =
∑n
i=1 wi

4: the penalty vector m = (m1,m2, · · · ,mn)T ∈ [−ρ, ρ]n is revealed: expert i pays penalty mi

5: our algorithm pays the penalty wm
Φ

6: for every expert i do wi ← wie
−εmi/ρ2

We now analyze the algorithm, for notional convenience, we put superscript t everywhere to indi-
cate the time step of the variables: mt

i is the penalty of expert i at time t, mt = (mt
1,m

t
2, · · · ,mt

n)T,
wti is the weight of expert i at the end of time t, wt = (wt1, w

t
2, · · · , wtn), and Φt =

∑n
i=1 w

t
i is total

weight of all experts at the end of time t. The theorem we shall try to prove is

2

Theorem 1. Assume ε ∈ (0, ρ) and T ≥ ρ2 logn
ε2 . Then at the end of Algorithm 1, we have for every

expert i,

1

T

T∑
t=1

wt−1mt

Φt−1
≤ 2ε+

1

T

T∑
t=1

mt
i.

Proof. For every t ∈ [T], we have

Φt =

n∑
i=1

wti =

n∑
i=1

wt−1
i e−εm

t
i/ρ

2

≤
n∑
i=1

wt−1
i

(
1− εmt

i/ρ
2 +

ε2

ρ2

)
used that |mt

i| ≤ ρ, ε ≤ ρ

=

(
1 +

ε2

ρ2

) n∑
i=1

wt−1
i − ε

ρ2

n∑
i=1

wt−1
i mt

i

=

(
1 +

ε2

ρ2

)
Φt−1 − ε

ρ2

n∑
i=1

Φt−1w
t−1
i

Φt−1
mt
i

=

(
1 +

ε2

ρ2

)
Φt−1 − ε

ρ2
Φt−1w

t−1mt

Φt−1

=

(
1 +

ε2

ρ2
− ε

ρ2

wt−1mt

Φt−1

)
Φt−1.

Notice that wt−1mt

Φt−1 is the penalty paid by our algorithm at time t. Take the logarithm on both sides
we have:

ln Φt ≤ ln

(
1 +

ε2

ρ2
− ε

ρ2

wt−1mt

Φt−1

)
+ ln Φt−1 ≤ ε2

ρ2
− ε

ρ2

wt−1mt

Φt−1
+ ln Φt−1.

Solve the recursion we have:

ln ΦT ≤ Tε2

ρ2
− ε

ρ2

T∑
t=1

wt−1mt

Φt−1
+ ln Φ0.

For every expert i ∈ [n], we have ΦT ≥ exp(−ε
∑T
i=1m

t
i/ρ). Thus, the penalty paid by our algorithm

is

T∑
t=1

wt−1mt

Φt−1
≤ Tε+

ρ2

ε
ln

Φ0

ΦT
≤ Tε+

ρ2

ε
ln

n

exp(−ε
∑T
i=1m

t
i/ρ

2)
= Tε+

ρ2

ε
lnn+

T∑
i=1

mt
i.

So if T ≥ ρ2 lnn
ε2 then ρ2

ε lnn ≤ Tε. The theorem holds by dividing the above inequality by T .

3 Application: Approximate Linear Program Solver

Our goal in the section is to solve the following linear program (LP):

a1,1x1 + a1,2x2 + . . . a1,mxm ≥ b1
a2,1x1 + a2,2x2 + . . . a2,mxm ≥ b2

...

an,1x1 + an,2x2 + . . . an,mxm ≥ bn
x ∈ [0, 1]n

Let

A =

A1

A2

...
An

 =

a1,1, a1,2, . . . , a1,m

a2,1, a2,2, . . . , a2,m

. . .
an,1, an,2, . . . , an,m

 , B =

b1
b2
...
bn

 , and x =

x1

x2

...
xm

 .

3

Then, our goal can be concisely written as to find an x ∈ [0, 1]n such that Ax ≥ b, where “≥” means
coordinate-wise greater than or equal to.

In an approximate LP solver, the solution we find only satisfies the LP approximately. That is,
assume the LP is feasible, then our algorithm will find an x ∈ [0, 1]n such that Aix ≥ bi− ε for every
i ∈ [n].

Define ρ = maxi∈[n] supx∈[0,1]n |Aix − bi|. All the notations will be defined in the same way as
those in Section 2. Our approximate LP solver is defined in the following procedure:

1: w0
1 = w0

2 = w0
3 = · · · = w0

n = 1

2: for t← 1 to T , where T =
⌈

4ρ2 lnn
ε2

⌉
do

3: find an xt ∈ [0, 1]n satisfying wt−1

Φt−1 (Axt − b) ≥ 0
4: expert i pays penalty mt

i := Aix
t − bi

5: for i ∈ [n] do wti = wt−1
i · e−εmti/ρ2

6: output x∗ = 1
T

T∑
t=1

xt

Analysis of Algorithm We assume ε ≤ ρ since otherwise the problem is trivial. Since T ≥ 4ρ2 lnn
ε2 ,

by Theorem 1, we have for every i ∈ [n],

0 ≤ 1

T

T∑
t=1

wt−1

Φt−1
(Axt − b) ≤ 1

T

T∑
t=1

(Aix
t − bi) + ε = Aix

∗ − bi + ε

Thus, for every i ∈ [n], we have

Aix
∗ ≥ bi − ε.

4 Application: Online Convex Optimization

In the online convex optimization problem, there is a polytope P. In each iteration t of the algorithm,
the algorithm first chooses a point xt ∈ P and then the penalty function f t : P → R≥0 for iteration
t is revealed. Overall the penalty paid by our algorithm is then

∑
t∈T f

t(xt). It will infeasible to
require our penalty to be small compared to the best omniscient algorithm. However, we show that
this is possible if we require the omniscient algorithm can must choose the same point x at all time
steps. In other words, we need

∑
t∈T f

t(xt) to be small compared to infx∈P
∑
t∈T f

t(x).
In this section, we only show how to solve the problem when P is the (n−1)-dimensional simplex,

namely, P = {x ∈ [0, 1]n : x1 + x2 + · · · + xn = 1}. Then every point x ∈ P can be viewed as a
distribution over the n experts. Also, we assume the functions f t are convex and have the first and
second order derivatives. The algorithm is as follows:

1: initialize w0
1 = w0

2 = · · · = x0
n = 1

2: for t← 1 to T do
3: choose xt = wt−1

Φt−1

4: let the penalty of the expert i be mt
i = (∇f t(xt))i

5: for every i ∈ n do wti ← wt−1
i · e−εmti/ρ2

In the algorithm, ρ is an upper bound on |(∇f t(xt))i| for every t, xt and i.

Analysis of the algorithm If T ≥ ρ2 lnn
ε2 , then for every expert i, we have

1

T

T∑
t=1

xt∇f t(xt) ≤ 1

T

T∑
t=1

(∇f t(xt))i + 2ε.

4

Notice that every x∗ ∈ P is a convex combination of the n experts. Thus, we have for every x∗ ∈ P,

1

T

T∑
t=1

xt∇f t(xt) ≤ 1

T

T∑
t=1

x∗∇f t(xt) + 2ε.

Then we have

1

T

T∑
t=1

(
f t(xt)− f t(x∗)

)
≤ 1

T

T∑
t=1

(xt − x∗)∇f t(xt) ≤ 2ε,

where the first inequality used that each f t is convex.

5

