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1 Introduction

A 2-player zero-sum(matrix) game is defined by a matrix M € R™*™, called the payoff matrix.
There are two players with competing interests: the row layer wants to minimize the payoff and the
column player wants to maximize the payoff. In the game, the row player chooses a row i € [n] and
the column player choose a column j € [m]. Then M(i,7) will be the payoff of this game. Imagine
that the row player needs to pay M(i,7) dollars to the column player; thus the row player wants to
minimize M (3, j) and the column player wants to maximize M (3, j).

Consider the payoff matrix for the rock-paper-scissor game:

rock paper | scissors
0 1 -1 .
rock rock | paper | scissors
0 -1 1
rock 0 1 ]
-1 0 1
paper 1 0 -1 paper -1 0 1
e 1 -1 0 SCISSors 1 -1 0
SCISSOTS | 4 ) 0

Table 1: The table on the left-side shows the gains of both players in a rock-paper-scissors game.
Since the sum of the gains of the two players is always 0, we can simply use the gain for the column
player to define the payoff matrix, as given by the table on the right-side.

1.1 Pure and Mixed Strategies

We call a row 4 (a column j, resp.) a pure strategy for the row (column, resp.) player. If the players
are only allowed to use pure strategies, it is important to know which player plays first. For example,
in the rock-paper-scissors game, the second player will always win the game if he knows the strategy
of the first player. To make the problem interesting, we consider mized strategies for both players:

Definition 1. A mized strategy for the row player (resp., the column player) is defined as a distri-
bution D (resp., P) over the rows (resp., columns) of the payoff matriz. If the strategies used by the
two players are D and P respectively, then the payoff of game is defined as

M(D,P) := iNDIEFjNP M (3, j).

Notice that a pure strategy can also be viewed as a special case of a mixed strategy.

Consider the rock-paper-scissors game where the row player plays the following mixed strategy
D: rock with probability 1/2, paper with probability 1/4 and scissors with probability 1/4. Then
we have M(D,rock) = 1/4 —1/4 = 0, M(D,paper) = 1/2 — 1/4 = 1/4, and M (D, scissors) =
—1/2+41/4 = —1/4. So given that the row player plays D, the best pure strategy for the column
player is paper. It is easy to see that this is also the best strategy (pure or mixed) for the column
player.

However, the row player can do better: He can use mixed strategy D* where the probabilities
for rock, paper and scissors are all 1/3. Then even the column player knows the strategy, the payoff
of the game is at most (indeed, exactly) 0. On the other hand, if the column player plays first, he
can also use the uniform distribution P* and then no matter what the row player plays, the payoff
of the game is at least 0. Consider the situation where two players fix their strategies D* and P*.
Then even if one player knows the strategy of the other player, he still does not have an incentive
to change his own strategy. The min-max theorem, which is stated in the next section, that this is
always the case for 0-sum games.



2 Min-max Theorem
The min-max theorem of 0-sum games is defined as follows.
Theorem 2. i%f max M (D, j) = sup min M (i, P).
J p i
We define the value of the game to be \* = infp max; M(D,j) = suppmin; M (i, P). Let

D* = arginfp max; M (D, j) and P* = argsupp min; M (i, P) to be the optimum strategies for both
players. Then notice that A\* = M (D*, P*).

Example Consider the following payoff matrix.

a b
A | 30 | -10
B |-10 | 20
C | 20 | -20

Then the optimum strategies for both players are defined as follows:

P*:{a
b

First, we fix the strategy D* for the row player. Then M(D*,a) = 3 x (—10) 4+ 2 x 20 = 22 and
M(D*,b) = 2 x 20 + 2 x (=20) = 2. So the payoff of the game is 2.

Then, we fix the strategy P* for the column player. We have M (A, P*) = 2 x 30—1—% x =10 = %,
M(B,P*) =12 x (—10)+ 2 x 20 = 2 and M(C,P*) = % x20+ 2 x —20= 5—70. So, the row player
will choose either B or C' and the payoff of the game is 70. The value of the game is A\* = %.

A
D*:{B
C

Nlw N O
o

3 Multiplicative weight update algorithm to find optimum
strategies

In this section, we show how to use the multiplicative weight update method to compute the value
of the game, as well as to give the optimum strategies for both players. We assume the set pure
strategies for the row player is [n] and that for the column player is [m]. So, the size of M is n x m.
By scaling, we assume every entry in M is in [—1,1].

The algorithm is as follows:

Algorithm 1 Multiplicative weight update for 0-sum games

letw=wy=w3=---=w, =1
2: fort < 1 to T, where T = (%] do
3. Dt — (w1,w32,...,wn)

witwz+-tws,
4: let j* be the j maximize M (D", j) N
5: define the penalty of every i to be M(i, j;), and thus we update update w; < w; - e~ <M(7t)
according to the MWU rule

T
1 1 t T
S= L3 M) 0
T—1
Since T > 1n6(2n ), we have
1 & 1 &
fZM(DtJt) Sm}anM(l j) + 2¢ (2)
=1 =1



Let £ be the ¢ € [T] with the minimum M (D?, j*). Let D = D. Let P be the uniform distribution

over the multi-set {j*, j2,---,57 }. Then we have
1 1«
mas M(D,§) = M(D, ) < & 3" M(D', ) < min & 3" M0, ) + 2¢ = min M P) + 2.

t=1 t=1

Notice that max; M(B,j) > A\* and miniM(i,p) < A*. Thus the above inequality implies
max; M(D,j) < A + 2¢ and min; M (i, P) < \* — 2¢. This implies that up to the additive factor
of 2¢, D and P are optimum strategies for the row and column players respectively. We can use
A= max; M(ﬁ,j) = M(Df,jf) to approximate the value A\* of the game.



