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1 Embedding of Metrics

Definition 1. Given a set X, and function d : X ×X → R≥0, (X, d) is called a metric if

• d(x, x) = 0 for every x ∈ X,

• (symmetry) d(x, y) = d(y, x) for every x, y ∈ X, and

• (triangle inequalities) d(x, y) + d(y, z) ≥ d(x, z) for every x, y, z ∈ X.

For example, in the k-dimensional Euclidean metric space (X, d), we have X = Rk, and for every
x, y ∈ X, d(x, y) = ‖x− y‖2.

Definition 2. Given two metrics (X, dX) and (Y, dY ), an embedding of (X, dX) to (Y, dY ) is a
function f : X → Y .

In the lecture, we assume the embeddings are non-contractive:

Definition 3. A embedding f of (X, dX) to (Y, dY ) is said to be non-contractive if for every x, y ∈ X,
we have dY (f(x), f(y)) ≥ d(x, y).

Definition 4. For a non-contractive embedding f of (X, dX) to (Y, dY ), we say f has distortion (at
most) D, for some D ≥ 1, if for every x, y ∈ D, we have

dY (f(x), f(y)) ≤ D · dX(x, y).

We use function f to embed (X, dx) to a host metric space: (Y, dY )is a function f : X → Y s.t.
dx(x, y) ≤ dY (f(x), f(y)) ≤ Ddx(x, y) D is called the distortion of the embedding.

Recall that the following embedding result is implied by the Johnson-Lindenstrauss dimension
reduction lemma. Assume (X, d) is a metric on n points in the Euclidean space. If k = O( logn

ε2 ) is
big enough, then there is an embedding of (X, d) to (Rk, L2) with distortion 1 + ε, where (Rk, L2)
is the k-dimensional Euclidean space.

2 Embedding of Metrics to Distribution of Tree Metric

Definition 5. A metric (X, d) is said to be a tree-metric, if we can construct a weighted tree
T = (V,E,w) such that X ⊆ V such that d(u, v) for every u, v ∈ X is the length of the unique path
between u and v in T .

Given a tree T , we use dT to denote the shorted-path distance function between points in T .
Many NP-hard problems on general metrics can be solved efficiently since trees are often friendly

to the dynamic programming technique. Then it is appealing if to embed any metric into a tree
metric with a small distortion. Unfortunately, the following metric shows that this is impossible:
Consider the metric Cn induced by the cycle on n-points. One can indeed show that any embedding
of the metric into a tree metric has distortion at least Ω(n). It is tricky to prove the statement, but
we can consider a restricted way to construct the tree-metric: We remove any edge from the cycle to
obtain a path and let the tree metric to be induced by the path. Then the distortion of the metric
is n− 1 since the distance between the two end points of the removed edge changes from 1 to n− 1.

However, we can show that there is a small-distortion of metrics into tree-metrics, if we relax the
requirement slightly. Consider the cycle example. If we remove an edge uniform at random, then
the expected distortion of any pair of points will be at most 2. We just focus on two points u, v that
are adjacent in Cn; one can easily show that it suffices to consider such pairs. Then with probability
1/n, the edge between u and v will be removed and the distance between u and v becomes n − 1
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in the case. With the remaining 1 − 1/n probability, the distance remains 1. Thus the expected
distortion is 1

n × (n− 1) + (1− 1
n )× 1 ≤ 2.

This motivates us to embed any metric into a distribution of tree metrics. Building on the work
of Bartal, Fakcharoenphol, Rao, and Talwar shows that any n-point metric (X, d) can be embedded
into a distribution of non-contractive tree metrics with expected distortion O(log n).

Theorem 6 (Fakcharoenphol, RaoTalwar). Let (X, d) be a n-point metric. Then there is a distri-
bution π over trees T , such that

• for every T in the support of π, and every u, v ∈ X, we have dT (x, y) ≥ d(x, y), and

• for every x, y ∈ X, we have ET∼π dT (x, y) ≤ O(log n)d(x, y).

We are not going to prove the theorem. Instead we show a building block in the proof of the
theorem, which we call the padded partitioning of a metric. With this building block, one can easily
obtain an embedding with a slightly distortion of O(log2 n). The O(log n) distortion can be obtained
by a more careful use of the padded partitioning technique.

3 Padded Partitioning

In this section, we fix the metric (X, d) with n = |X|. For every non-empty set S ⊆ X, we define
the diameter of S to be diam(S) := maxu,v∈S d(u, v).

Definition 7. Given a metric (X, d), two parameters ∆ > 0 and α ≥ 1, we say a random partition
P of X into subsets is said to be an (∆, α)-padded partitioning if

• with probability 1, for every S ∈ P, we have diam(S) ≤ ∆, and

• for every u, v ∈ X, we have

Pr
P

[x, y are separated in P] ≤ α · d(u, v)

∆
.

In this section, we show that for every ∆, there exists a (∆, O(log n))-padded partition of (X, d).
For simplicity, we can assume ∆ = 1 by scaling the distances.

3.1 Construction of (1, O(log n))-Padded Partition

For every X ′ ⊆ X,w ∈ X and r ∈ R≥0, we define ballX′(w, r) := {v ∈ X ′ : d(w, v) ≤ r} to be the
ball of points in X ′ with distance at most r to w. The random partition P is produced using the
following algorithm: It is easy to see that P is always a partition of X. Moreover, every set S has

1: let r be a number selected uniformly at random from [1/4, 1/2]
2: let π be a random permutation over X
3: X ′ ← X,P ← ∅
4: for every w ∈ X, in the order of π do
5: if ballX′(w, r) 6= ∅ then
6: P ← P ∪ {ballX′(w, r)}, X ′ ← X ′ \ ballX′(w, r)

7: return P

diameter at most 2r ≤ 1 since it is a ball of radius r. It suffices to prove the second property in the
definition of padded partition.

Lemma 8. For every set X ′ ⊆ X, every three points u, v ∈ X ′ and w ∈ X, we have

Pr[u ∈ ballX′(w, r), v /∈ ballX′(w, r)] ≤ 4d(u, v).

Proof. The event happens only if d(u,w) ≤ r < d(v, w). If d(u,w) < d(v, w), the probability that

the event happens is at most d(v,w)−d(u,w)
1/4 ≤ 4d(u, v) by triangle inequalities, since r is uniformly

chosen from an interval of length 1/4.

Definition 9. Focus on an execution of the algorithm. We say w separates u from v if at the
beginning of the iteration of Loop 4 for w, we have u, v ∈ X ′, u ∈ ballX′(w, r) and v /∈ ballX′(w, r).
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Fix a u, we sort the vertices in X using the non-decreasing order of distances to u. For every
w ∈ X we define ranku(w) denote the rank of w in the ordering. That is, if ranku(w) = i, then w is
the i-th nearest point in X to u. The following lemma can be proven:

Lemma 10. Pr[w separates u from v] ≤ 4d(u,v)
rankw(u) .

Proof. Suppose there is a w′ ∈ X with ranku(w′) < ranku(w) and w′ appears before w in the ordering
π. Then, we claim that w can not separate u from v. Assume otherwise. Then u and v must both
be in X ′ at the beginning of the iteration for w′. If d(w′, u) ≤ r, then u will be removed from X ′ in
the iteration and thus u will not be in X ′ at the iteration for w. Thus, we must have d(w′, u) > r.
However, in this case, we also have that w can not separate u from v.

Thus, for w to be able to separate u from v, we must have that for every w′ with ranku(w′) <
ranku(w), w′ must be after w in the permutation π. The probability that this event happens is
exactly 1

ranku(w) . Under the condition that this happens, the probability that w separates u from

v is at most 4d(u, v) by Lemma 8, since r and π are independently sampled. Thus, overall, the

probability that w separates u from v is at most 4d(u,v)
rankw(u) .

Thus, the probability that some w ∈ X separates u from v is at most
∑
w∈X

4d(u,v)
rankw(u) =

4d(u, v)
∑n
i=1

1
n = O(log n)d(u, v). The same can be prove for the probability that some w ∈ X

separates v from u. Notice that if u and v are separated in P, then either some w separated u
from v, or some w separated v from u. Thus, the probability that u and v are separated is at most
O(log n)d(u, v). Thus, we proved the second property in the definition of padded partition.

In the homework 5, we shall see an example of applying the FRT tree embedding result to reduce
an instance of some problem on general metrics to some instance on tree metrics.
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