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1 Probability Spaces

1.1 Sample Spaces

Definition 1. A sample space S is the set of all possible outcomes of an experiment. An event in
a sample space S is a subset E ⊆ S.

Definition 2. For an event E in S, define Ec = S \ E to be the complement of E, i.e, the event
that E does not happen.

For two events E,F in S,

• E ∩ F is the event that both E and F happen,

• EF = E ∪ F is the event that E or F happens,

• E and F are said to be mutually exclusive ifE ∩ F = ∅.

1.2 Discrete Probability Spaces

Definition 3. A discrete probability space is defined by a discrete sample space1 S, and a probability
mass function (pmf) p : S → [0, 1] such that

∑
x∈S p(x) = 1.

The probability function for the probability space is a function P such that

P (E) =
∑
x∈E

p(x), for every event E ⊆ S.

Example 1. Consider a fair even toss. Then the sample space is S = {H,′ T} where H indicates
“head-up” and T indicates “tail-up”. The pmf is p(H) = p(T ) = 1

2 . The probability function P has
P (∅) = 0, P ({H}) = P ({T}) = 1

2 and P ({H,T}) = 1.

Example 2. Consider the experiment where we toss a fair coin repeatedly until we see a head-up.
The outcome of the experiment is the number of coin tosses. Then S = Z>0 = {1, 2, 3, ....} and the
pmf p satisfies p(i) = 1

2i for every integer i ≥ 1. P (# coin tosses ≤ 3) = P ({1, 2, 3}) = 1
2 + 1

4 + 1
8 = 7

8 .

1.3 Continuous Probability Spaces

An example of a continuous probability space is the uniform probability space over the real numbers
[0, 1]. In this continuous probability space, a pmf becomes meaningless since the probability that
the outcome is any real number is 0. In this case, a probability density function is needed to define
the probability space.

A general probability space could be discrete, continuous in some d-dimensional space, or a
mixture of discrete and continuous spaces. Thus, to define a general probability space, we need
to define the probability function P directly. This P is over a subset Σ of “interesting” events in
the samples space S. Σ may not be the family of all events since there are some subsets of S that
are not measurable. So, a general probability space is defined by a tuple (S,Σ, P ) that satisfies
some conditions, which we omit here. For this course, most of the probability spaces we shall use
are discrete; occasionally we shall use the uniform distribution over an real internal and Gaussian
distributions. Many lemmas and theorems hold for general probability spaces; however, in some
proofs we may only focus on the discrete probability space case for notational convenience. Also, by
default, we use S, p and P to denote the sample space, probability mass function and probability

1Recall that a set is discrete if it contains finite or countably infinite number of elements.
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function of the probability space considered. We also use a distribution to refer to a probability
space.

1.4 Some Invariants

Let E,F and G be events in a (discrete) probability space. Then,

• P (E) + P (Ec) = 1.

• P (E ∪ F ) = P (E) + P (F )− P (EF ).

• P (E ∪ F ∪G) = P (E) + P (F )P (G)− P (EF )− P (EG)− P (FG) + P (EG).

So if two events E and F are mutually exclusive then P (EF ) = P (∅) = 0. In this case, we have
P (E ∪ F ) = P (E) + P (F ).

The third equation can be extended to n events as follows.

Lemma 4. Let E1, E2, E3, · · ·En be n events. Then

P (E1 ∪ E2 ∪ E3 ∪ · · · ∪ En) =
∑

S⊆[n]:S 6=∅

(−1)|S|−1P

(⋂
i∈S

Ei

)
.

2 Conditional Probability Spaces and Conditional Probabil-
ities

Definition 5. Let E,F be events in probability space and assume P (F ) > 0. The probability of E

conditioned on F , denoted as P (E|F ), is defined as P (E|F ) = P (E∩F )
P (F ) .

Example 3. Consider 2 fair coin tosses in a row. Then, S = HH,HT, TH, TT and p(HH) =
p(HT ) = p(TH) = p(TT ) = 1

4 . Given that the first result is H, what is the probability that both
results are H? Here is the solution:

P (both results are H|first result is H) = P ({HH}|{HH,HT})

=
P ({HH} ∩ {HH,HT})

P ({HH,HT})
=

1/4

1/2
=

1

2
.

Example 4. Consider the same experiment as above. Given that at least there is one H in 2 coin
tosses , what is the probability that both tosses are H?

P (both results are H|at least one H) = P ({HH}|{HH,HT, TH})

=
P ({HH} ∩ {HH,HT, TH})

P ({HH,HT})
=

1/4

3/4
=

1

3
.

Example 5. Consider the experiment of throwing a fair dice. The value is big if it is 4, 5 or 6.
Then,

P (value is even|value is big) = P ({2, 4, 6}|{4, 5, 6})

=
P ({2, 4, 6} ∩ {4, 5, 6})

P ({4, 5, 6})
=

P ({4, 6})
P ({4, 5, 6})

=
2/6

3/6
=

2

3
.

2.1 Independence of Events

Definition 6. Two events E and F are said to be independent if the probability that one event occurs
in no way affects the probability of the other event occurring. Precisely, E and F are independent if
P (E|F ) = P (E), or equivalently P (EF ) = P (E)P (F ).

Example 6. Toss a fair coin twice. Let E be the event that the first toss is H and F be the event
where the second toss is H. Then P (E) = 1

2 , P (F ) = 1
2 and P (EF ) = 1

4 = P (E)P (F ). Thus the
events E and F are independent.
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Example 7. Example: We toss a fair coin repeatedly until we see a head up and let X be the
number of coin tosses we did. Let E be the event that X ≤ 2 and F be the event X is even. Then,

• P (E) = p(1) + p(2) = 1
2 + 1

4 = 3
4 .

• P (F ) = p(2) + p(4) + p(6) + p(8) + · · · = 1
4 + 1

16 + 1
32 + 1

128 + · · · = 1/4
1−1/4 = 1

3 .

• P (EF ) = p(2) = 1
4 = P (E)P (F ).

Thus, the two events E and F are independent.
Notice that the difference between E and F being mutually exclusive and that E and F being

independent. The former happens iff EF = ∅, which implies P (EF ) = 0 and the second happens iff
P (EF ) = P (E)P (F ). So, P (E) > 0 and P (F ) > 0, then E and F can not be both mutually exclusive
and independent. Also notice the definition of mutual exclusiveness only requires the sample space,
while that of independence requires both the sample space and the probability function.

Observation 7. If E and F are independent, then Ec and F are independent.

2.2 Bayes Formula

Lemma 8 (Bayes Formula). Let E and F be two events with P (F ) > 0, then

P (E) = P (F )P (E|F ) + (1− P (F ))P (E|F c).

Proof. P (E) = P (E ∩ F ) + P (E ∩ F c) = P (F )P (E|F ) + P (F c)P (E|F c). The lemma follows by
observing that P (F c) = 1− P (F ).

Example 8. Suppose we have two different types of weather: sunny and rainy. The probability
each weather occurs tomorrow and the probability that some bus will be delayed given the weather
are as follows:

• P (sunny) = 0.7, P (rainy) = 0.3, P (delayed|sunny) = 0.1, P (delayed|rainy) = 0.3.

Then we have P (delayed) = 0.7× 0.1 + 0.3× 0.3 = 0.16.

3 Expectation of Random Variables

3.1 Functions of Random Variables

We have defined the probability space. A random variable in the probability space is then a variable
indicating the outcome of a random experiment for the probability space. That is, the random
variable take values in the sample space. However, often we need to consider functions of random
variables. A function of a random variable can be also viewed as a random variable. For example,
consider the experiment of throwing a fair dice. The sample space is {1, 2, 3, 4, 5, 6} and pmf is
p(1) = p(2) = · · · = p(6) = 1

6 . Let X be the random variable denoting the value obtained from
the dice throwing. Let Y be a function of X such that Y = small if X ∈ {1, 2, 3} and Y = big if
X ∈ {4, 5, 6}. Then, for convenience, we also say that Y is a random variable from the probability
space.

3.2 Expectations

Definition 9. Given a real-valued random variable X from some discrete probability space, the
expectation of X, or the expected value of X, denoted as E[X], is defined as

E[X] =
∑
x

P (X = x)x.

Example 9. Toss a fair coin and let X = 0 if the result is tail-up and X = 1 if it is head-up. Then
we have E[X] = 1

2 × 0 + 1
2 × 1 = 1

2 . This suggests that the expectation of a variable may be some
value that the variable can never take.
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Example 10. We throw a fair dice. Let Y = −100 if the value is in {1, 2, 3} and 100 if it is in
{4, 5, 6}. Then E[Y ] = 1

2 × (−100) + 1
2 × 100 = 0.

In the above example, we used a function as a random variable. The following lemma holds when
computing the expectation of a function of a random variable:

Lemma 10. Let Y be a real-value function of a random variable X. Then

E[Y ] =
∑
x

p(X = x)Y (x).

Example 11. Consider a biased coin toss which takes head-up with probability p ∈ (0, 1) and
tail-up with probability 1 − p. We repeatedly toss the coin until we see a head-up. Let X be the
number of coin-tosses we have. Then we have

E[X] =

∞∑
i=1

P (X = i)i =

∞∑
i=1

p(1− p)i−1i

=

∞∑
j=1

∞∑
i=j

p(1− p)i−1 =

∞∑
j=1

p(1− p)j−1

1− (1− p)
=

∞∑
j=1

(1− p)j−1

=
1

1− (1− p)
=

1

p
.

As we shall define later, the above distribution is called the geometric distribution with parameter
p.

3.3 Linearity of Expectation

Lemma 11 (Linearity of Expectation). Let X1, X2, · · · , Xn be n random variables. Then,

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi].

Proof. Let S and p be the sample space and pmf for the common probability space for all the n
random variables. Then, each Xi is a function over elements x ∈ S.

E

[
n∑

i=1

Xi

]
=
∑
x∈S

p(x)

n∑
i=1

Xi(x) =

n∑
i=1

∑
x∈S

p(x)Xi(x)

n∑
i=1

E[Xi].

In particular, for two random variables X and Y we have E[X + Y ] = E[X] + E[Y ].

Example 12. Suppose we throw a fair dice to get an integer value between 1 and 6. Let X = 0 if
the value is in {1, 2, 3} and 1 if it is in {4, 5, 6}. Let Y be the value modular 2. Then, we have

dice value 1 2 3 4 5 6
X 0 0 0 1 1 1
Y 1 0 1 0 1 0

X + Y 1 0 1 1 2 1

Then, we have E[X] = 1
2 ,E[Y ] = 1

2 and E[X + Y ] = 1 = E[X] + E[Y ].

3.4 Dependence of Random Variables

Definition 12. Assume X and Y are 2 random variables from a discrete probability space. Then
X and Y are said to be independent if for every x and y, we have

P (X = x, Y = y) = P (X = x)P (Y = y).
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Example 13. Assume a dice can only land on 1,2,3 or 4 . Assume that X and Y are random
variables as follows:

X =

{
0 value ∈ {1, 2}
1 value ∈ {3, 4}

, Y =

{
0 value ∈ {2, 4}
1 value ∈ {1, 3}.

Then X and Y are independent, since for every x, y ∈ {0, 1}, we have P (X = x) = 1
2 , P (Y = y) = 1

2
and P (X = x, Y = y) = 1

4 .
In general, for two real-value variables X and Y , we may not have E[XY ] = E[X]E[Y ]. Consider

Example 12. We have E[X] = E[Y ] = 1
2 but E[XY ] = 1

6 since XY = 1 if and only if the dice value
is 5. However, we the equation holds if X and Y are independent:

Lemma 13. If X and Y are independent real value variables, we have

E[XY ] = E[X]E[Y ].
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